
Rash: From Reckless Interactions to Reliable
Programs

William Gallard Hatch
University of Utah

USA
william@hatch.uno

Matthew Flatt
University of Utah

USA
mflatt@cs.utah.edu

Abstract
Command languages like the Bourne Shell provide a terse
syntax for exploratory programming and system interaction.
Shell users can begin to write programs that automate their
tasks by simply copying their interactions verbatim into a
script file. However, command languages usually scale poorly
beyond small scripts, and they can be difficult to integrate
into larger programs. General-purpose languages scale well,
but are verbose and unwieldy for common interactive actions
such as process composition.
We present Rash, a domain-specific command language

embedded in Racket. Rash provides a terse and extensible
syntax for interactive system administration and scripting,
as well as easy composition of both Racket functions and
operating system processes. Rash and normal Racket code
can be nested together at the expression level, providing the
benefits of a shell language and a general-purpose language
together. Thus, Rash provides a gradual scale between shell-
style interactions and general-purpose programming.

CCS Concepts • Software and its engineering→Com-
mand and control languages;Macro languages; Domain
specific languages; Scripting languages;

Keywords Domain specific language, shell, macros
ACM Reference Format:
William Gallard Hatch and Matthew Flatt. 2018. Rash: From Reck-
less Interactions to Reliable Programs. In Proceedings of the 17th
ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences (GPCE ’18), November 5–6, 2018, Boston,
MA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3278122.3278129

1 Impulsive Introduction
Programmers often write prototypes, quick solutions, or ex-
ploratory programs, then later edit or rewrite them to move

GPCE ’18, November 5–6, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 17th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences (GPCE ’18), November 5–6, 2018,
Boston, MA, USA, https://doi.org/10.1145/3278122.3278129.

them along a spectrum of program maturity and scale. Mov-
ing code along this scale is often viewed as a transition from
“scripts” to more mature “programs,” and current research
aims to improve that transition, especially through grad-
ual typing [18, 20]. In this paper, we address a point in the
spectrum that precedes even the “script” level of maturity:
command sequences in an interactive shell.

Different features and aspects of programming languages
are well suited to different stages of program maturity. For
example, static types are clearly useful for ensuring and
maintaining software correctness, but types are often seen
as burdensome or obstructive when writing scripts, so many
scripting languages eschew types. Programmerswant brevity
and even less formality in interactive settings, so read-eval-
print loops (REPL) often have relaxed rules on object mu-
tability and introspection, and Unix shells offer especially
terse notations.

Tailoring a language to a specific point in the spectrum has
obvious advantages, but serving different points in the spec-
trum through wholly distinct languages creates new prob-
lems. Developers may be forced to choose between main-
taining a program in a language that is no longer suited
to the program’s evolution, or rewriting the program in a
new language. We should instead make languages adapt
and interoperate along the maturity spectrum, providing
a smooth path from one end to the other. Gradual typing
systems like TypeScript [13], Reticulated Python [22], and
Typed Racket [21] are the most prominent efforts toward
this alternative, but they start at the “scripts” point in the
spectrum.
To support graduality between shell-style interactions

and general-purpose programs, a language must be general-
purpose while also supporting domain-specific features of
a shell, such as process and file manipulation. Additionally,
there is tension between optimizations for programmatic and
interactive settings, such as optimizing notation for variables
or literal data, and optimizing for legibility or terseness. The
key challenge of graduality between interactions and pro-
grams is to support a seamless mixture of general-purpose
and command notation.
Rash is a command language embedded in the general-

purpose Racket language.1 Rash supports lightweight syn-
tax and programming patterns similar to popular command
1http://rash-lang.org

https://doi.org/10.1145/3278122.3278129
https://doi.org/10.1145/3278122.3278129
https://doi.org/10.1145/3278122.3278129
http://rash-lang.org

GPCE ’18, November 5–6, 2018, Boston, MA, USA William Gallard Hatch and Matthew Flatt

languages, like Bash and PowerShell, but Rash and normal
Racket code can be embeddedwithin each other at the expres-
sion level. Rash also interoperates with other Racket-based
languages, including Typed Racket.With these features, Rash
affords easy and gradual movement along the spectrum from
interactions to scripts to programs, and it allows program-
mers to combine modules that inhabit different stages of the
maturity spectrum.
Rash is organized into two subsystems which embody

the contributions of this paper. The first subsystem is Linea,
which provides a line-oriented syntax suitable for terse inter-
actions. Linea maintains interoperability with other Racket
dialects by leveraging Lisp’s traditional separation of read
and macro expansion phases. Linea’s reader accepts a mix-
ture of line-oriented and S-expression notation and produces
output suitable for macro expansion. Linea also introduces
line macros, a customization in the macro-expansion phase
allowing programmers to add user-defined keywords and
block semantics. The second subsystem is a domain specific
language (DSL) for pipelining, which generalizes Unix-style
pipelines to support arbitrary objects in addition to byte
streams, similar to PowerShell’s [19] pipelines. Both subsys-
tems are libraries that can be used on their own to provide
part of the convenience of a shell language within conven-
tional Racket programs, but their benefits synergize to form
the Rash language.

2 Impetuous Overview
A programmer reading Rash code should understand four
main points:

• Rash is primarily line-based. Lines within a program
or block are evaluated in series from top to bottom.

• The meanings of lines are determined by line macros.
• The default line macro is run-pipeline, which imple-
ments the pipelining DSL. Pipelines may be composed
of subprocesses that communicate using byte streams
or Racket functions that communicate using arbitrary
Racket objects.

• Despite being primarily line based, users can embed
S-expressions and blocks of lines within each other by
using parentheses () and braces {}, respectively.

To clarify these points, as well as to demonstrate the ben-
efits of embedding a command language inside a general-
purpose language, we discuss an example REPL session. Sup-
pose that Alyssa P. Hacker wants to look at some of her
spending habits over the last year. Eachmonth, Alyssa’s bank
gives her a CSV file detailing her debit card purchases. Alyssa
stores this file as ∼/records/year/month/purchases.csv
in her computer, with year and month substituted appropri-
ately. She starts a Rash session and types:

cd records
ls 2017/*/* | grep purchases

Many of Rash’s cues for the syntax of commands and the
inclusion of command pipelines come directly from existing
shell languages such as Bourne shell [2]. The above com-
mands work as a Bourne shell user would expect: First the cd
line changes the current working directory, then the ls and
grep pipeline is executed. Output from the ls subprocess
specified on the left of the | operator becomes the input to
the grep subprocess specified on its right, and the pipeline
prints a listing of Alyssa’s purchases.csv files.

Alyssamade various purchases at Computer Store through-
out the year, and would like to see a summary of them. She
types:

in-dir 2017/* {
echo summary of (current-directory)
grep -i "computer store" purchases.csv

}

to see a quick report for Computer Store purchases every
month. This example shows several Rash features:

• Parentheses in a command line escape to Racket. In the
expression echo summary of (current-directory),
one of the arguments to the echo subprocess is com-
puted by the Racket function current-directory.

• The in-dir identifier is a line macro. Line macros are
keywords that, when placed at the start of the line,
determine the meaning of that line. The in-dir line
macro performs glob expansion on its first argument
and executes its second argument once for each direc-
tory matched. It also parameterizes each execution of
the second argument so that (current-directory)
returns the matched directory.

• Braces read a block of code in line mode. Braces can be
used in line mode as this example shows, or they can
be used inside parenthesised S-expressions to escape
back to line mode. Braces implicitly act like Racket’s
begin form, which evaluates its sub-forms, in this case,
lines, sequentially.

• While logical lines in Rash are usually the same as
physical lines, there are ways to combine multiple
physical lines into one logical line. Newline characters
are treated as normal whitespace if they are escaped by
putting a backslash in front of them, if they are inside
a multiline comment, or if they are inside parentheses.
If newlines are inside a curly brace block, they delimit
the lines of an embedded line-mode context, all of
which is part of one logical line in the outer context.
The example above takes advantage of the behavior
of braces to give the in-dir line macro a multi-line
body.

• The echo and grep lines in the loop body aren’t obvi-
ously using a line macro like in-dir, but every line
that doesn’t explicitly begin with a line macro has
a default inserted. While users can configure differ-
ent default line macros for different lexical regions

Rash: From Reckless Interactions to Reliable Programs GPCE ’18, November 5–6, 2018, Boston, MA, USA

of code, the run-pipeline line macro is used as the
default throughout this paper (with the exception of
section 3.2). The echo and grep lines shown above are
technically pipelines, although they are degenerate
pipelines of only one command each.

Alyssa then wants to know how much she spent in total
in December. She runs:
cat 2017/12/purchases.csv |> csv-file->dicts \
|> map (λ (t) (hash-ref t "amount")) \
|> map (λ (n) (string->number n)) |> apply +

Rash’s pipeline DSL supports two types of pipeline seg-
ments: subprocess segments, which communicate using byte
streams, and function segments, which communicate using
Racket objects. The |> operator used above sends the result
of the previous pipeline segment to a Racket function. The
|> operator builds its function by using all the forms to its
right until the next pipeline operator, using the _ identifier as
the name of the argument it gets from the previous pipeline
segment. If the _ identifier is not explicitly present in one of
the argument forms, the |> operator appends it to the end of
the list. So |> a b will use the function (λ (x) (a b x))
while |> a _ b will use the function (λ (x) (a x b)).

When a Racket function segment follows a subprocess seg-
ment, such as csv-file->dicts following cat, the subpro-
cess output stream is passed to the function as a Racket port
object, which is Racket’s encapsulation of a byte stream. If a
subprocess segment follows a function segment, the return
value of the function is printed to the stdin of the subpro-
cess. To prevent blocking, all adjacent subprocess pipeline
segments, as well as the first function segment following
them, if any, are run in parallel, while function segments are
executed from left to right sequentially.
The above pipeline uses the function csv-file->dicts

to parse the CSV contents and return a list of one hash table
per purchase, using the fields of the CSV header line as keys.
The pipeline then uses more functions to extract and sum
the dollar amounts of the purchases.

It is somewhat implausible that someone would frequently
type examples like the previous one in an interactive shell.
Instead of the above example, Alyssa can also get the same
result by running this simplified version:
|> csv-file->dicts "2017/12/purchases.csv" \
=map= hash-ref _ "amount" \
=map= string->number |> apply +

Pipeline operators are user-definable macros, so users can
create new operators that simplify the notation for their
commonly used patterns. For example, users may define
operators for mapping over or filtering lists or other data
structures, operators for chaining object method or monad
function calls, or operators that determine their behavior
based on context, such as an operator that behaves like |>
when its first argument is bound as a Racket function and
otherwise behaving like |. In the example above, Alyssa

uses a custom =map= pipeline operator which simplifies and
flattens the common pattern of mapping over a list. The
=map= operator, like the |> operator, automatically places
the _ identifier if it is not explicitly written, but it uses the
_ identifier as the argument for iterations of the map loop
rather than the entire list received from the previous pipeline
segment.
In this example, the |> operator is used at the beginning

of the pipeline as a prefix operator. All pipelines start with
a prefix operator, but a default is inserted automatically
when none is specified explicitly. The default prefix operator
throughout this paper is the | operator, which specifies a
subprocess pipeline segment, but it can be customized for
different lexical regions of code. The |> operator has no
pipeline argument to pass to the csv-file->dicts function
when it is in prefix position, so the _ argument is not in-
serted, and explicit use of it would raise a compilation error.
Here, the csv-file->dicts function is given a literal name
of a file to open rather than receiving a port from a previous
pipeline stage.

Alyssa decides she wants to save the results of some com-
putations to variables. She types:

(define n-hardware-purchases
(string->number
(with-rash-config

#:out (compose string-trim port->string)
{grep -i "computer store" 2017/*/purchases.csv \

| wc -l})))

def month-list in-dir 2017/* {
|> csv-file->dicts "purchases.csv"

}

This example highlights more language features:

• If a line starts with an open parenthesis, line macro
insertion is skipped, and the line is read as a normal
Racket form.

• At the top level of the REPL and of modules written in
#lang rash, pipeline input and output are connected
to Racket’s current-input-port and current-output-
port, which are generally connected to stdin and std-
out. Sections of Rash code can be wrapped with the
with-rash-config macro, which accepts optional ar-
guments to parameterize behaviors for the code region,
including the default line macro, the default pipeline
input and output ports, and the default prefix operator.
Instead of a port, the output can be set to a function
that accepts a port to convert subprocess output into
Racket objects.

• Rash lines are expressions that can return values. The
in-dir line macro returns a list of results from the
executions of its body. The def identifier is a line-
macro version of define that is modified to better
support line macros within a definition.

GPCE ’18, November 5–6, 2018, Boston, MA, USA William Gallard Hatch and Matthew Flatt

Use of the with-rash-config macro above is unwieldy,
and the definition of n-hardware-purchases in this case
can be shortened to:
(define n-hardware-purchases
(string->number
#{grep -i "computer store" 2017/*/purchases.csv \

| wc -l}))

The #{} form implicitly sets subprocess input to an empty
port, converts subprocess output to a string, and trims trail-
ing whitespace from it.
Alyssa is curious how much her spending varies from

month to month. She runs:
(require math/statistics)
(stddev (for/list ([m month-list])

{|> values m =map= hash-ref _ "amount" \
=map= string->number |> apply +}))

The (require math/statistics) form makes the stddev
function available. Rash users can require modules writ-
ten in any Racket dialect, such as #lang typed/racket,
#lang lazy, and, of course, #lang rash. Users can seam-
lessly switch between using S-expressions and line-oriented
code, or between using subprocesses or functions andmacros
from their favorite Racket libraries.

As Alyssa runs all of these commands, she copies some of
her favorites into a file. She puts the line #lang rash at the
top of the file to signify that they are in the Rash dialect of
Racket. As long as she does not skip interactions that create
intermediate definitions that are used later, a verbatim copy
of Alyssa’s interactions makes a working program.

When Alyssa is finished running commands and copying
the relevant ones to her script file, she has a program for
summarizing her finances, but it summarizes only her 2017
finances. To make her script more useful, she must make her
script more general by making changes like replacing literals
with variables and adding error-handling code. She may
also extend her script over time with new features, such as
creating graphs about her financial data. As she generalizes
and extends her program, she has access to all of Racket,
such as the racket/cmdline DSL to specify command-line
parsing to set initial variable values, and the plot library for
generating graphical plots.
This introductory example of Alyssa analyzing banking

data demonstrates the strengths of Rash’s “interactions to
scripts” approach. At the beginning, Alyssa explored the
filesystem and examined files in her banking directory us-
ing programs such as cat and grep. These operations are
convenient in traditional shells like Bash [9], but they are
cumbersome in scripting languages like Python or Racket.
Later Alyssa analyzed CSV data by parsing it with a Racket
function, then mapping and filtering over the data with more
Racket functions. These operations passed structured lists of
objects and used mathematical functions like stddev, and
they are easy to accomplish in general-purpose languages

like Python or Racket. Operating over structured data, in con-
trast, is very difficult in shell languages like Bash without ac-
cess to programs that can do the work, each one deserializing
the data and then serializing it again in a format recognized
by the next program. In the common case, structured data in
shell scripts is handled with ad-hoc, error-prone parsing of
lines of text. Traditional shell languages and general-purpose
languages each handle half of the problem well, but the other
half poorly. By embedding a shell language within a general-
purpose language, Rash fits both aspects of the problem well.

3 Incautious Examples
To further demonstrate how embedding a shell language
within a general-purpose language supports a broader part
of the interactions-to-programs spectrum, we present the
following examples.

3.1 Error Handling
During an interactive session a user manually executes most
control flow and decides how to handle errors after seeing
them. Once interactions are turned into scripts, control flow
and error handling need to be explicitly added. Since they
are not part of the domain of interactive command execution,
shell languages often have only rudimentary control-flow
and error-handling support. By embedding a command lan-
guage within a general-purpose language, the command lan-
guage can inherit fully featured control and error handling
forms.
As an example of a common type of error handling that

can be done in Rash scripts, consider a script that uses the
pdflatex command to generate pdf files. The pdflatex com-
mand generates various intermediate files that clutter the
file system, so our example runs pdflatex in a temporary di-
rectory. We do not want to leave temporary files, so we want
to remove the directory whether pdf generation is successful
or not.
(define here (current-directory))
mkdir my-tmp-dir
try {

in-dir my-tmp-dir {
pdflatex $here/example.tex &< /dev/null
mv example.pdf $here/

}
} catch err {

(raise err)
} finally {

rm -rf my-tmp-dir
}

Since cleaning up a temporary directory even in the pres-
ence of errors is a common problem in shell scripts, it may be
convenient to simplify the pattern with a custom line macro.
The in-tmp-dir line macro used below encapsulates direc-
tory creation and removal as well as the try and in-dir line
macros used above.
(define here (current-directory))

Rash: From Reckless Interactions to Reliable Programs GPCE ’18, November 5–6, 2018, Boston, MA, USA

in-tmp-dir {
pdflatex $here/example.tex &< /dev/null
mv example.pdf $here/

}

3.2 Make
Building software is another case where a program — specif-
ically, a build script — needs to accomplish something that
parallels a programmer’s interactive commands. Often this
is done using the make program, which accepts makefiles
written in a language that specifies build targets, their de-
pendencies, and their build recipes. The recipes in makefiles
are written in shell language, but the targets and dependen-
cies can be specified using only a limited language specific
to the make program. We have written a make replacement
that allows Rash and ordinary Racket code in recipe bodies
as well as in target and dependency lists.
Here is an example in our make language that builds a

“hello” program with a version-specific file name and makes
a symbolic link to it with the generic “hello” name:
#lang rash/demo/make
(define version #{cat version.txt})

hello : (string-append "hello-" version) {
ln -sf (current-dependencies) hello

}

hello-$version : hello.c version.txt {
gcc -o (current-target) hello.c

}

The #lang line sets the reader and available identifiers of
the file to those provided by our rash/demo/make module.
The rash/demo/make module configures the file to have
the same reader as normal Rash modules and makes all the
same identifiers available. However, the rash/demo/make
module provides extra definitions, including the current-
dependencies and current-target functions, as well as
the make-target linemacro. The rash/demo/make language
sets make-target as the default line macro at the top level
of the module. The make-target line macro accepts lists
of target and dependency files as well as a a recipe body
to be executed when a target is built. The targets and de-
pendencies can be listed literally, computed with string in-
terpolation using dollar escapes, or computed with normal
Racket code by escapingwith parentheses. The make-target
line macro sets run-pipeline to be the default line macro
within its body and parameterizes the current-target and
current-dependencies to return its target and dependency
lists appropriately. The rash/demo/make language also au-
tomatically inserts code to handle command line arguments
and build any specified targets.
Complicated target names, dependency names, or build

recipes, such as dependencies whose names must be com-
puted dynamically, can benefit from a full, general-purpose
programming language. Meanwhile, straightforward build

instructions benefit from being written as closely as possible
to how the programmer writes them interactively.

4 Temerarious Lines
Lisp systems break up the process of turning program text
into executable code into distinct passes, including read,
macro expand, and compile. By separating reading and expan-
sion stages, Lisps allow programmers to create macros to ex-
tend the language while reasoning about trees and identifiers
rather than at the level of byte stream parsing. The macro
expander can also manage scope automatically during ex-
pansion, which is crucial to making macro-based extensions
composable. While the separation of reading and expanding
has primarily been used by S-expression-based languages,
some languages with algebraic syntax like Honu [14] have
also found it effective.
The read stage plays a role similar to the lexer in tradi-

tional languages. It transforms sequences of characters into
numbers, symbols, string, etc. Lisp readers differ from tradi-
tional lexers, however, in that rather than producing a flat
sequence of tokens, they produce a tree by grouping ele-
ments between parentheses. Linea extends the read stage
with a reader function that transforms a line-oriented con-
crete syntax into a syntax tree.

The expand stage walks over the tree produced by the read
pass. As it traverses the tree, the expander detects macro
use-sites and invokes the code bound to each macro. Macros
transform subtrees, and can be seen as mini compilers, since
they successively compile macro-enriched language variants
into simpler languages until arriving at a core language.
This core language can finally be interpreted or compiled
to machine code. Linea extends the expand stage with the
notion of line macros, which allow users to extend or replace
the semantics of lines or blocks of code.

4.1 Reading Lines
As the reader layer for Rash, Linea was designed primar-
ily with two goals: allowing convenient live interactions,
and mixing seamlessly with normal Racket code. To enable
users to simply type commands like ls /etc, line breaks
are used to determine basic grouping. To enable seamless
mixing, parentheses switch the reader to (mostly) traditional
S-expression reading while braces switch the reader back
into line mode.
While users can escape to Racket by using parentheses

within a line, it is sometimes convenient to bypass the line
reader and its line macro insertion to use plain Racket with
S-expressions. Linea detects when lines start with an open
parenthesis, and it uses only the traditional S-expression
reader on them instead of grouping based on newlines. To
allow the macro expander to distinguish between groupings
derived by lines or by top-level S-expressions, all forms are
implicitly wrapped with an extra symbol. Lines are prefixed

GPCE ’18, November 5–6, 2018, Boston, MA, USA William Gallard Hatch and Matthew Flatt

with the #%linea-line symbol, and top-level S-expressions
are wrapped with the #%linea-s-exp symbol. Implicit #%
symbols are discussed further in section section 4.2.

Top-level S-expression detection leads to an idiosyncrasy.
A user may want the first argument of a line macro to be a
parenthesised form, such as:
run-pipeline (if use-llvm? 'clang 'gcc) program.c

If this example is written without the explicit run-pipeline
line macro name, it becomes
(if use-llvm? 'clang 'gcc) program.c

which starts with a parenthesis and thus would trigger top-
level S-expression reading instead of line reading.
While it may seem that Linea without the top-level S-

expression escape would be a more consistent system, and
the reader can be configured to behave as such if desired,
the escape embodies an important principle in Rash. Linea
with the escape enabled is a near superset of S-expressions
and Linea without the escape. The parts removed in this
combination, specifically top-level non-parenthesised forms
frompure S-expressions and #%linea-lines that start with a
parenthesised form in pure Linea, are not frequently used. Al-
lowing the common cases of both notations together greatly
increases convenience, while requiring the uncommon cases
to be written in a more round-about way is only little in-
convenience. The interactive focus of Rash and Linea drive
design to be maximized for convenience over conceptual
simplicity, and adding the top-level S-expression escape is
a trade-off similar to the added complexity of grouping by
line and then by parentheses instead of just by parentheses.
Because Linea with top-level S-expression detection is a

near-superset of S-expressions, most programs written in
#lang racket/base can be switched to #lang rashwithout
changing meanings. With this design line-based interactions
can be recorded and saved to a script or inserted into an
existing program, and then can be changed gradually as
desired into the S-expression format more commonly used
for general Racket programming features.

4.2 Linea Grammar
The grammar of Linea is as follows:
⟨linea-program⟩ ::= ⟨nl⟩* ⟨linea-form⟩+ [⟨last-linea-line⟩]
⟨linea-form⟩ ::= ⟨linea-line⟩

| ⟨linea-s-exp⟩
⟨linea-s-exp⟩ ::= ⟨paren-form⟩

⟨linea-line⟩ ::= ⟨line-mode-form⟩+ ⟨nl⟩+

⟨last-linea-line⟩ ::= ⟨line-mode-form⟩+

⟨paren-form⟩ ::= (⟨nl⟩* ⟨s-exp-mode-form⟩*)
| (⟨nl⟩* ⟨s-exp-mode-form⟩* ⟨nl⟩*

. ⟨nl⟩* ⟨s-exp-mode-form⟩ ⟨nl⟩*)
⟨brace-form⟩ ::= { ⟨nl⟩* ⟨linea-form⟩* [⟨last-linea-line⟩] }
⟨hash-brace-form⟩ ::= #{ ⟨nl⟩* ⟨linea-form⟩* [⟨last-linea-line⟩] }
⟨line-mode-form⟩ ::= ⟨line-mode-number ⟩

| ⟨line-mode-symbol⟩
| ⟨string⟩
| ⟨paren-form⟩

| ⟨brace-form⟩

| ⟨hash-brace-form⟩

| ⟨hash-form⟩

⟨s-exp-mode-form⟩ ::= ⟨number ⟩ ⟨nl⟩*
| ⟨symbol⟩ ⟨nl⟩*
| ⟨string⟩ ⟨nl⟩*
| ⟨paren-form⟩ ⟨nl⟩*
| ⟨brace-form⟩ ⟨nl⟩*
| ⟨hash-brace-form⟩ ⟨nl⟩*
| ⟨hash-form⟩ ⟨nl⟩*

The following points clarify the grammar:
• Non-newline whitespace is implicitly allowed between
nonterminals and repetitions in the grammar. Since
newlines are different from other whitespace in Linea,
however, the grammar makes explicit where newlines
are allowed and required with ⟨nl⟩.

• There are differences between ⟨line-mode-symbol⟩ and
⟨line-mode-number⟩ in line-mode and ⟨symbol⟩ and
⟨number⟩ in S-expression mode. For instance, -i is
a ⟨line-mode-symbol⟩, but as an ⟨s-exp-mode-form⟩ it
is a ⟨number⟩, specifically the complex number 0-1i.
Additionally, the period character produces a symbol
in line mode but is treated specially in S-expression
mode to produce an improper list.

• The ⟨paren-form⟩ can also be substituted for a ⟨bracket-
form⟩, which reads identically to the ⟨paren-form⟩

except that parentheses () are replaced with square
brackets [].

• ⟨hash-form⟩s are various forms prefixed with the #
character, and include boolean literals #t and #f. The
⟨hash-form⟩s are taken directly from Racket’s reader,
and they are primarily for literal data such as hash
tables and structs. The one exception is ⟨hash-brace-
form⟩, which Rash treats differently than Racket.

Reading a program produces a list much like reading nor-
mal S-expressions, but a few implicit symbols are added by
the reader function.

• Each list produced by reading a ⟨linea-line⟩ is prefixed
with #%linea-line.

• Each list produced by reading a ⟨linea-s-exp⟩ is wrapped
in another list prefixedwith #%linea-s-exp, such that
the result is (#%linea-s-exp ⟨list-as-read⟩).

• Each list produced by a ⟨brace-form⟩ is prefixed with
#%linea-expressions-begin.

• The ⟨hash-brace-form⟩ produces the same result as a
⟨brace-form⟩, except that it is wrapped in a list prefixed
with #%hash-braces.

• When a Racket file is read, it must produce a module
form with the name of a module to import identifier
from, a name for the new module, and the code of the
module within a #%module-begin form.

As an example, following Rash program:
#lang rash
echo (+ 1

Rash: From Reckless Interactions to Reliable Programs GPCE ’18, November 5–6, 2018, Boston, MA, USA

#{(+ 2 (* 3 4))})
echo goodbye

assuming it is in a file named bye.rkt, produces the same
result that a traditional S-expression reader would produce
if given this:
(module rash bye
(#%module-begin

(#%linea-line
echo
(+ 1

(#%hash-braces
(#%linea-expressions-begin
(#%linea-s-exp (+ 2 (* 3 4)))))))

(#%linea-line echo goodbye)))

Racket has a convention of prefixing identifiers with #%
when they are added implicitly, including #%app and #%da-
tum, which the macro expander implicitly adds to every func-
tion application or literal data form it encounters, respec-
tively. These identifiers are used as extensibility hooks for
language implementors to change the semantics of implicit
forms for modules in their languages. Linea provides #%
identifiers as extension hooks to follow the convention.

Similar to S-expressions, the Linea reader does not provide
any initial meaning for code aside from determining the tree
shape. Just as S-expressions can be used to encode languages
with many different execution models (such as Typed Racket
and the logic programming language Parenlog), Linea syntax
can be used to encodemany different line-oriented languages.
However, the Linea package provides default meanings for
its implicit identifiers for use in languages like Rash, which
are described in section 4.4.

4.3 Embedding Lines
Racket and many of its dialects use a read function that can
be customized by an object called a readtable. Linea provides
a function to add an escape to line mode with braces (or
other desired delimiters) to any language that uses Racket
readtables, providing a convenient way to embed Rash into
other languages. The #lang rash language enables braces
that escape into a line-mode block in both line mode and
S-expression mode by default.

Additionally, Rash code can be embeddedwithin languages
that do not support readtable customization by using the the
rash macro, which accepts a literal string of Rash code dur-
ing macro expansion, such as (rash "ls -l"). Essentially,
the code string and the rash macro are used together to de-
lay a portion of the read stage of compilation until themacro
expansion stage. Because the rash macro reads the string
during macro expansion time, no run-time string evaluation
is performed. Racket’s macro system also carries hygiene
and source location information with identifiers and other
syntax objects, and the rash macro uses this information
from the string to produce output whose identifiers have
proper scope and location reporting information.

The rest of section 4.3 is an aside that discusses trade-
offs between these two methods of embedding Rash code. It
demonstrates interesting points about embedding multiple
languages within the same file that are highlighted by Rash,
but it does not contain information necessary to understand
the Rash language.
Reading strings at expansion-time with the rash macro

adds flexibility, since it allows Rash code to be embedded
within languages that do not support readtable modifica-
tion. However, embedding with strings and reading at macro
expansion time causes problems with string escaping and
macro inspection.
The first and more shallow problem is that nesting tradi-

tional string notation requires escaping various characters
with backslashes. One solution to the backslash explosion
problem is to use the at-reader provided by the Scribble [7]
documentation language. While this is an improvement, care
must be used to invoke the at-reader in a way that does not
allow any of its own escaping or eager reading of the inner
strings. To ease the nesting of code strings, we created a new
notation using «» (guillemet) quotation marks. Guillemet
strings include all characters literally with no escaping, and
they balance the guillemet delimiters inside the string. So
«a \ «b» ««c»»» is read the same as "a \\ «b» ««c»»".
Guillemet strings allow easy nesting of code strings to ar-
bitrary depths without escaping and are easy to implement
and add to a language.

While guillemet strings fix the notation problem of nesting
strings, a further issue is that delaying reading to expansion
time makes less of the program tree available to macros.
Most macros only shallowly inspect their subtrees, since
the meaning of deeper subtrees can be changed by deeper
macros. However, some macros, notably the syntax macro
that instantiates syntax templates, do dig deeper. The syntax
macro takes a template and replaces pattern variables at
arbitrary depths within the template with bindings created
by macros such as syntax-case.
(syntax-case (syntax (first second third)) ()

[(a b c) (syntax ((one a) (two b) (three c)))])

The above example matches the pattern (a b c) to the input
(first second third). In the right-hand-side of the match,
the syntax macro replaces the pattern variables a, b, and c
with first, second, and third respectively, producing the
output ((one first) (two second) (three third)).

In the following example using the rashmacro, one would
expect the x in the pattern to be substituted with the literal
string "world":
(syntax-case (syntax "world") ()

[x (syntax (rash «echo hello |>> string-append _ x»))])

Because the x in the template is inside a yet-unread string,
the substitution is missed and an unbound variable error,
or worse, the capture of some other x variable, occurs. If
we change the example to use braces, which do not delay

GPCE ’18, November 5–6, 2018, Boston, MA, USA William Gallard Hatch and Matthew Flatt

the reading of the sub-form until macro expansion time, the
substitution happens as expected.
(syntax-case (syntax "world") ()
[x (syntax {echo hello |>> string-append _ x})])

While reader delaying with the rash macro can be useful
for embedding Rash code within languages that do not sup-
port readtable extensions, it is not always composable with
other macros. Fixing the syntax template problem by using
a readtable extension that does all embedded line reading
up-front strengthens the idea of the separate read, expand,
compile pipeline.

4.4 Line Macros
After the read phase, Racket’s macro expander determines
the meaning of identifiers based on the language used for a
module as well as definitions and imports found during ex-
pansion. Linea provides its #% identifiers with the following
default meanings that are used in Rash:

• #%hash-braces parameterizes the default input, out-
put, and error redirection for the run-pipelinemacro
and executes its sub-form.

• #%linea-expressions-begin desugars to Racket’s
begin form, which evaluates sub-forms in series.

• #%linea-s-exp is simply a pass-through macro, so
(#%linea-s-exp (+ 1 2)) desugars to (+ 1 2)

• #%linea-line detects whether a line starts with a line
macro name and either passes through to the specified
line macro or inserts a default when one is not given
explicitly. (#%linea-line a b c) desugars to (a b
c) if a is a line macro. Otherwise it desugars to (lm a
b c), where lm is the default line macro based on the
lexical region containing the line.

Line macros are used to provide an extensible set of key-
words for Rash lines. Most line-oriented languages have
keywords like for and if that give special meaning to a
line or block of code. Generally, languages have a fixed set
of keywords that provide special meaning, and even lan-
guage authors can not easily extend the set unless they have
set aside a large supply of reserved words in advance. Rash
uses line macros to provide an extensible set of keywords
that change the meaning of the line, and it relies on Linea’s
reading of subforms with parentheses and braces to provide
blocks for “line macros” that need multi-line bodies. With
line macros, Rash programmers can use standard control
flow forms like loops, conditionals, and try/catch forms that
look much like they do in popular line-oriented languages,
and also define new ones to taste.
in-dir /tmp {
for f in (directory-list) {

try {
rm -rf $f

} catch e {
echo An error occured!
echo $f could not be deleted!

}
}

}

Linemacros enable different line-oriented languages based
on Linea to share special forms like control flow and defini-
tion forms, and they enable languages to embed just one line
of another line-oriented language by prefixing the line with
its line macro name. Following the vein of interactive conve-
nience, if two line macros both implement languages that are
desireable as a default and that can be distinguished by some
heuristic, a user can set the default to a line macro that ap-
plies that heuristic and defers to the appropriate macro. For
instance, a line macro might apply a heuristic to determine
whether to behave like a desktop calculator or a subprocess
pipeline.
pipeline-or-math 5 + 10 * 3 ;; returns 35
pipeline-or-math ls -l ;; prints a file list

The pipeline-or-math line macro above simply checks
whether the first argument is a number, applies the infix-
math macro if it is, and applies the run-pipeline macro
otherwise. If pipeline-or-math is set as the default, the
example can be simplified to this:
5 + 10 * 3
ls -l

One may wonder why only macros specifically tagged as
line macros are used to bypass the default behavior rather
than allowing any macro to do so. A macro use may in-
clude other macro names as arguments, including as the
first argument. For example, the first argument in a use of
the run-pipeline macro could be the name of a macro that
implements a command. If the command macro were to over-
ride the run-pipeline default line semantics, then it could
not be pipelined together with other commands without
explicitly writing run-pipeline at the start of the line.

5 Precipitate Pipelining
The primary domain of most command languages is subpro-
cess creation and composition. Thousands of programs have
been written to be used as commands in shell languages like
Bash, and many programmers use them as their primary
means of system interaction and automation. We designed
Rash to support this style of programming and system inter-
action as a first-class citizen.

At its core, Rash’s pipelining library includes amodule that
provides a simple function for pipelining processes. It pro-
vides functionality similar to DSL libraries like Scsh [17] and
Plumbum [6] that provide functions or macros for pipelining
processes in the syntax of their host language. Rash’s core
subprocess pipelining function can be used like this:
(run-subprocess-pipeline '(ls)

'(grep rkt)
'(wc -l))

Rash: From Reckless Interactions to Reliable Programs GPCE ’18, November 5–6, 2018, Boston, MA, USA

The simplest line-macro language that we could define for
use as a command language might be ordinary Racket with a
layer of parentheses removed. However, the above example,
even with the outer parentheses removed, still requires bal-
ancing several pairs of parentheses. To implement a flatter
language, with less syntactic nesting and balancing required,
we have designed the pipelining DSL with infix operators.
Beyond providing the semantic meaning of an operation,
infix operators are parsed to create groupings that appear
flat in the source syntax.

While the pipelining DSL includes infix operators, it does
not include variable precedence or associativity rules. Left-
to-right pipelining is less powerful than other infix operator
schemes that allow different precedence and associativity
rules, but the simplicity of left-to-right pipelines is helpful in
an interactive setting. The left-to-right flow of data is easy to
read and reason about, and it also often matches the thought
process of users as they write pipelines from left to right.
Left-to-right pipelines also make it easy to make the most
common edits to commands. Languages with precedence
rules for infix operators frequently require edits to several
parts of an expression to balance or add new parentheses
when adding a new operator with higher precedence. With
left-to-right processing, adding new stages to a pipeline re-
quires only appending to the right side of the command. If
a user appends an incorrect pipeline stage to a correct pre-
fix, the command can be fixed by only editing the end of
the command line. These right-side-only edits require less
text editing sophistication to perform with speed and con-
venience than edits that change several parts of a command
buffer.
Beyond providing easy process pipelining, we designed

Rash to support similar pipelining notation for Racket func-
tions and objects. Command languages like PowerShell [19]
have shown that pipelines communicating with objects pro-
vide a much richer interface than pipelines communicating
with byte streams. For instance, users can more easily filter
based on object attributes or compute on tree or graph data
in pipelines without intermediate serialization and deserial-
ization steps between processes.

To increase convenience, Rash allows users to define new
pipeline operators. Users can write pipeline segments more
succinctly with operators tailored for different method calls,
and operators can be defined to map or filter over sequences
or treat a list as a single object. Custom operators also al-
low users to customize behavior of common operators, such
as customizing the | operator to use different policies for
automatic globbing or string interpolation.

5.1 Pipeline Specification
The grammar of the run-pipeline line macro is as follows:
⟨invocation⟩ ::= run-pipeline ⟨option⟩* ⟨start-op-expr ⟩

⟨op-expr ⟩* ⟨option⟩*
⟨option⟩ ::= &in ⟨port-expression⟩

| &< ⟨filename⟩
| &out ⟨port-expression⟩
| &> ⟨filename⟩
| &>> ⟨filename⟩
| &>! ⟨filename⟩
| &err ⟨port-expression⟩
| &bg
| &pipeline-ret
| &strict
| &permissive
| &lazy
| &lazy-timeout ⟨number-expression⟩

⟨start-op-expr ⟩ ::= [⟨pipeline-operator ⟩] ⟨pipeline-argument ⟩*
⟨op-expr ⟩ ::= ⟨pipeline-operator ⟩ ⟨pipeline-argument ⟩*

The run-pipeline line macro desugars to an invocation
of a pipelining function, with the pipeline operator expres-
sions providing the specifications for the pipeline stages. The
start-op-expr may omit its operator, in which case a lexical
default is substituted.

The ⟨option⟩ argumentsmay bewritten at the beginning or
end of the macro invocation for convenience, and influence
various aspects of pipeline evaluation.

• The &in, &out, and &err options take an argument
expression that should produce a port for the default
stdin, stdout, or stderr of subprocesses in the pipeline.

• The &>, &>>, and &>! options are shorthands for &out
that accept a file name as an identifier or a string and
open it in write, append, or truncate mode, respec-
tively.

• If the &pipeline-ret option is given, an object repre-
senting the pipeline is returned and can be inspected
with functions like pipeline-success?.

• If the &bg option is given, the &pipeline-ret option
is implied, and the pipeline object is returned immedi-
ately rather than waiting for the pipeline to terminate.
The pipeline object returned is a Racket evt, which can
be combined with other evts in complex synchroniza-
tion patterns in the manner of Concurrent ML [15]. As
a simple example, passing the pipeline object to the
sync function causes the current thread of execution
to block until the pipeline terminates.

• If neither &bg nor &pipeline-ret is given, the run-
pipeline macro returns the value returned by the
last stage of the pipeline or raises an exception if the
pipeline was unsuccessful.

Pipeline success is determined by subprocess return codes
and whether function segments raise exceptions. A pipeline
is always unsuccessful if a function segment raises an ex-
ception. The handling of subprocesses is determined by the
&strict, &permissive, and &lazy options.

• A &permissive pipeline is not considered unsuccess-
ful if subprocesses that aren’t the last segment of the
pipeline return unsuccessful codes. Permissive pipelines
kill any subprocesses that haven’t finished before the

GPCE ’18, November 5–6, 2018, Boston, MA, USA William Gallard Hatch and Matthew Flatt

last pipeline segment does. Permissive pipelines match
the behavior of pipelines in common shells like Bash.

• A &strict pipeline is unsuccessful if any subprocess
returns an unsuccessful return code. Strict pipelines re-
quire that all subprocesses terminate before the pipeline
is considered finished. Strict pipelines prevent silent
failures in intermediate pipeline stages, but can not
be used with infinitely running subprocesses without
causing the host script to run indefinitely.

• A &lazy pipeline strictly checks the return code of
all subprocesses that have terminated before the last
pipeline segment, or within a timeout period after-
ward, but assumes any subprocesses that have not
terminated by the timeout to be successful and kills
them. The lazy mode is a compromise between strict
and permissive pipelines to allow infinite subprocesses
while catching most failures in intermediate pipeline
stages.

Each pipeline operator is itself amacro that is invokedwith
all arguments to its right up to the next operator, and must
desugar to an expression that returns a pipeline segment
specification. For example, in this pipeline:

echo hello |> string-append _ " world"

The |> operator is invoked with the syntax list (|> string-
append _ "world"), and returns code to generate an ob-
ject specifying an object pipeline segment containing the
function (λ (x) (string-append x " world")). The im-
plicit | operator receives the syntax list (| echo hello),
and returns code to generate an object specifying a sub-
process pipeline segment using the argument list ’("echo"
"hello"). Objects specifying subprocess segments include
an argument list and an optional redirection port for stderr.
Objects specifying function segments include a function that
accepts one or zero arguments. Compound segments can also
be returned, and contain a list of specification objects. Since
pipelines starting with a function segment pass no argument
to the function, pipeline operators may provide two trans-
former functions instead of one: the first is invoked when
the operator is in starting position, the second is invoked
otherwise.

6 Risky Review of Related Work
Rash is not the first attempt to serve a broader portion of
the spectrum by embedding a shell into a general-purpose
language or by adding general-purpose features to a shell.
We discuss related systems in the following subsections, but
none of them seamlessly cover the full spectrum from one-off
interactions to a pervasively extensible programming ecosys-
tem (with hundreds or thousands of libraries and packages)
like Rash on Racket.

6.1 Object Pipelines
PowerShell [19] is an object-oriented shell language created
by Microsoft. PowerShell aims to replace operating system
processes and byte streams with cmdlets, which are .Net
CLR classes designed to be run as commands, and object
streams, respectively. External processes can be used as well
as cmdlets, with their output treated as .Net strings. Using
.Net objects allows the language to have rich inspection and
interactions with objects returned by cmdlets. Due to its
use of the .Net CLR, it has rich communication with other
CLR languages like C#, and a PowerShell interpreter class
can be loaded by other CLR languages to evaluate strings of
PowerShell code dynamically.
Like PowerShell, Rash provides a convenient means of

using object-oriented system administration commands and
pipelines. Rash improves upon the ability to combine and
even mix shell-style code with other languages. By lever-
aging the Racket macro system, Rash expressions can be
embedded into files written in other Racket languages and
still enjoy the benefits of compilation and static error check-
ing rather than being only dynamically evaluated.

6.2 Stand-Alone Shells
Several projects including Oil Shell [3] and Elvish [24] are
attempts to build command languages that serve a broader
section of the maturity spectrum. These stand-alone shell
languages improve upon older shells such as Bash by using
more composable and reliable general-purpose language con-
structs. While they serve a broader part of the spectrum than
many other shell languages, as stand-alone languages they
impose muchmore implementation andmaintenance burden
on authors than an embedded shell like Rash. Because of
this, stand-alone shells often lack advanced general-purpose
language features. Stand-alone shells also tend to have few
third party libraries compared to general-purpose languages.
By embedding itself within the general-purpose Racket

language, Rash inherits advanced features such as a hygienic
macro expander, multi-threading, and delimited continua-
tions, as well as automatically supporting Racket’s catalog
of third party libraries.

6.3 Process Pipelining Libraries
There are many projects that aim to provide a natural means
of composing external processes within the syntax of a
general-purpose language. These include Scsh [17] for Scheme,
Caml-Shcaml [12] for Ocaml, Turtle [10] and Shelly [23] for
Haskell, Plumbum [6] for Python, and many more. Most
of these provide means of mixing host-language code in
pipelines, such as by inserting a function that reads and
writes bytes into a subprocess pipeline. Some include creative
and useful ways of integrating the process and byte-stream
model into the host language. For instance, Caml-Shcaml
provides adaptors to give various types to byte streams and

Rash: From Reckless Interactions to Reliable Programs GPCE ’18, November 5–6, 2018, Boston, MA, USA

allows rich interaction within Ocaml code while preserving
the original text of lines for programs later in the pipeline to
process the lines unchanged. These pipelining libraries are
designed for creating scripts and not to provide a syntax for
convenient interactive use of processes or functions for sys-
tem administration. The shell-pipeline library within Rash
provides similar functionality to these, and Rash combines
it with syntactic changes to add a focus on interaction.

6.4 Shells Embedded in General-Purpose Languages
Eshell [8] embeds a Bourne-like shell in Emacs Lisp. It allows
program arguments to be computed with Eshell expressions,
it allows lines of parenthesised elisp to be used in place
of lines of shell code, and it implements many commands
as Eshell functions. Scripting with Eshell is possible but
discouraged, and scripts must be executed within an instance
of Emacs. Eshell’s shell pipelines are character oriented, and
communication occurs by placing command output into an
emacs buffer. Eshell does not have a facility such as line
macros to customize the meaning of its line-oriented syntax
or provide custom keywords for different block constructs.
Xonsh [16] is a language built using a superset of the

Python grammar that includes Bourne-shell-like syntax for
subprocess pipelines. To resolve ambiguities in the combina-
tion of grammars, it uses heuristics such as whether names
are bound as variables, generally preferring the interpreta-
tion of the standard Python grammar over its alternative
Bourne-style grammar. It also includes syntax for explic-
itly switching between Python and shell code, and allows
Python functions with appropriate interfaces to be used in
place of processes in byte-stream pipelines. It includes import
hooks to allow Python files to be imported by Xonsh files
and vice versa. It has many features to provide a convenient
and useful interactive shell for system administration and
general computer use. Xonsh does not have tools to allow
Python functions that accept and return arbitrary objects
to be used for system administration with the same ease
and convenience as external processes, syntactic support for
shell-style pipelines of objects like PowerShell and Rash, or
a macro system for user-defined syntax extensions.
Ammonite [11] extends Scala with things like top-level

expressions for easier use in writing small scripts. It provides
a library of functions for shell-style file system manipula-
tion, and a shell-style REPL for live interaction. It does not
provide any extra support for running or pipelining external
processes, but rather focuses on object-oriented shell script-
ing using scala functions. The interactive REPL uses a syntax
that includes many elements that may be considered heavy
for daily interactive use, particularly by programmers used
to the light-weight Bourne shell syntax.

Neugram [4] is similar to Ammonite in that it provides a
more scriptable layer on top of a general-purpose language,
in this case Go. It provides a method of embedding process

pipelines in shell syntax. It can be used interactively but
doesn’t emphasize use as an interactive shell.

There are various other efforts attempting to mix process
pipelining and shell-style programming with more general-
purpose languages. Salient examples include Zoidberg [1]
(based on Perl) and Closh [5] (based on Clojure). They gen-
erally include a syntax modified to be easier to use in an
interactive command line, subprocess pipelines, and a way
to switch between code in the host syntax and the shell syn-
tax. These languages usually have limited compatibility with
their host languages, for instance not being able to provide
functions as a library to programs written in the host lan-
guage. Many of them focus on interactive use, with little
or no support for scripting. Rash differs from other shells
embedded in general-purpose languages by having full com-
patibility with other Racket languages, supporting pipelines
of objects as well as byte streams, allowing racket functions
to be used as interactive commands that have syntactic con-
venience equal to that of subprocesses, and enabling user
extensibility with hygienic macros. These features allow rash
tomore fully enable interactions and scripts to advance along
the maturity spectrum.

7 Hasty Conclusion
Programmers want to use highly dynamic, terse languages
specialized for system administration and other interactive
tasks, but they would also like to automate these tasks by
transforming their interactions into scripts. We have demon-
strated how Rash’s approach of embedding a shell language
within a general-purpose language allows programmers to
work in a suitable command language while also growing
their scripts gradually into mature programs using general-
purpose language features and libraries. Rash accomplishes
this by including a terse line-oriented syntax, by allowing
its line notation and Racket’s notation to be nested together,
by preserving and expanding on Racket’s pervasive exten-
sibility, and by providing a pipelining DSL that generalizes
Unix pipelines.

Acknowledgments
The authors would like to thank Michael Adams, Robby
Findler, Eric Eide, and the anonymous reviewers for their
feedback on the paper. This work was supported by the
National Science Foundation through grant number CNS-
1526324.

References
[1] Joel Berger. Zoidberg - A modular perl shell. 2018. https:

//metacpan.org/pod/Zoidberg

[2] S. R. Bourne. Unix Time-Sharing System: The UNIX
Shell. Bell System Technical Journal 57(6), 1978.

https://metacpan.org/pod/Zoidberg
https://metacpan.org/pod/Zoidberg

GPCE ’18, November 5–6, 2018, Boston, MA, USA William Gallard Hatch and Matthew Flatt

[3] Andy Chu. Oil. 2018. https://www.oilshell.org/
[4] David Crawshaw. Neugram, Go Scripting. 2018. https:

//neugram.io/

[5] Jakub Dundalek. Bash-like shell based on Clojure. 2018.
https://github.com/dundalek/closh

[6] Tomer Filiba. Plumbum: Shell Combinators and More.
2018. https://plumbum.readthedocs.io/

[7] Matthew Flatt, Eli Barzilay, and Robert Bruce Findler.
Scribble: closing the book on ad hoc documentation
tools. In Proc. SIGPLAN International Conference on
Functional Programming, 2009.

[8] Free Software Foundation. Eshell Manual. 2018.
https://www.gnu.org/software/emacs/manual/html_
mono/eshell.html

[9] Free Software Foundation. GNU Bash. 2018. https://
www.gnu.org/software/bash/

[10] Gabriel Gonzalez. turtle: Shell proogramming, Haskell-
style. 2018. https://hackage.haskell.org/package/turtle

[11] Li Haoyi. Ammonite Documentation. 2018. http://
ammonite.io/

[12] Alec Heller and Jesse A. Tov. Caml-Shcaml. In Proc. ML
Workshop, 2008.

[13] Microsoft. Typescript Language Specification. 2018.
http://www.typescriptlang.org/

[14] Jon Rafkind and Matthew Flatt. Honu: syntactic exten-
sion for algebraic notation through enforestation. In
Proc. International Conference on Generative Program-
ming and Component Engineering, 2012.

[15] J. H. Reppy. Concurrent Programming in ML. Cam-
bridge University Press, 1999.

[16] Anthony Scopatz. Xonsh Documentation. 2018. http:
//xonsh.org/

[17] Olin Shivers. A Scheme shell. Laboratory for Computer
Science, MIT, TR-635, 1994.

[18] Jeremy G. Siek and Walid Taha. Gradual Typing for
Functional Languages. In Proc. Scheme and Functional
Programming, 2006.

[19] Jeffrey P. Snover. Monad Manifesto. Microsoft, , 2002.
[20] Sam Tobin-Hochstadt and Matthias Felleisen. Interlan-

guage Migration: from Scripts to Programs. In Proc.
Dynamic Languages Symposium, 2006.

[21] Sam Tobin-Hochstadt, Matthias Felleisen, and T.
Stephen Strickland. The Design and Implementation of
Typed Scheme. In Proc. ACM Symposium on Principles
of Programming Languages (POPL), 2008.

[22] Michael M. Vitousek, Andrew Kent, Jeremy G. Siek,
and Jim Baker. Design and Evaluation of Gradual Typ-
ing for Python. In Proc. ACM Symposium on Dynamic
Languages, 2014.

[23] GregWeber and Petr Rockai. shelly: shell-like (systems)
programming in Haskell. 2018. https://hackage.haskell.
org/package/shelly

[24] Qi Xiao. Elvish. 2018. https://elv.sh/

https://www.oilshell.org/
https://neugram.io/
https://neugram.io/
https://github.com/dundalek/closh
https://plumbum.readthedocs.io/
https://www.gnu.org/software/emacs/manual/html_mono/eshell.html
https://www.gnu.org/software/emacs/manual/html_mono/eshell.html
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://hackage.haskell.org/package/turtle
http://ammonite.io/
http://ammonite.io/
http://www.typescriptlang.org/
http://xonsh.org/
http://xonsh.org/
https://hackage.haskell.org/package/shelly
https://hackage.haskell.org/package/shelly
https://elv.sh/

	Abstract
	1 Impulsive Introduction
	2 Impetuous Overview
	3 Incautious Examples
	3.1 Error Handling
	3.2 Make

	4 Temerarious Lines
	4.1 Reading Lines
	4.2 Linea Grammar
	4.3 Embedding Lines
	4.4 Line Macros

	5 Precipitate Pipelining
	5.1 Pipeline Specification

	6 Risky Review of Related Work
	6.1 Object Pipelines
	6.2 Stand-Alone Shells
	6.3 Process Pipelining Libraries
	6.4 Shells Embedded in General-Purpose Languages

	7 Hasty Conclusion
	Acknowledgments
	References

