
Generating Conforming Programs With Xsmith
William Gallard Hatch

william@hatch.uno
University of Utah

USA

Pierce Darragh
pierce.darragh@utah.edu

University of Utah
USA

Sorawee Porncharoenwase
sorawee@cs.washington.edu
University of Washington

USA

Guy Watson
guy.watson@utah.edu
University of Utah

USA

Eric Eide
eeide@cs.utah.edu
University of Utah

USA

Abstract
Fuzz testing is an effective tool for finding bugs in software,
including programming language compilers and interpreters.
Advanced fuzz testers can find deep semantic bugs in lan-
guage implementations through differential testing. How-
ever, input programs used for differential testing must not
only be syntactically and semantically valid, but also be free
from nondeterminism and undefined behaviors. Developing
a fuzzer that produces such programs can require tens of
thousands of lines of code and hundreds of person-hours.
Despite this significant investment, fuzzers designed for dif-
ferential testing of different languages include many of the
same features and analyses in their implementations. To
make the implementation of language fuzz testers for differ-
ential testing easier, we introduce Xsmith.
Xsmith is a Racket library and domain-specific language

that provides mechanisms for implementing a fuzz tester in
only a few hundred lines of code. By sharing infrastructure,
allowing declarative language specification, and by allowing
procedural extensions, Xsmith allows developers to write
correct fuzzers for differential testing with little effort. We
have developed fuzzers for several languages, and found
bugs in implementations of Racket, Dafny, Standard ML, and
WebAssembly.

CCS Concepts: • Software and its engineering→ Soft-
ware testing and debugging; Compilers.

Keywords: automated testing, compiler testing, fuzzing, ran-
dom program generation, random testing
ACM Reference Format:
William Gallard Hatch, Pierce Darragh, Sorawee Porncharoenwase,
GuyWatson, and Eric Eide. 2023. Generating Conforming Programs
With Xsmith. In Proceedings of the 22nd ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
GPCE ’23, October 22–23, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0406-2/23/10.
https://doi.org/10.1145/3624007.3624056

(GPCE ’23), October 22–23, 2023, Cascais, Portugal. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3624007.3624056

1 Introduction
The effectiveness of random testing, or “fuzzing,” is deter-
mined both by the chosen input generation strategy and the
method used to detect failing tests, or test oracle. The gen-
eration or mutation of test cases using random bytes can in
theory generate any test and therefore cover any code path,
but typically exercises only “shallow” code in parsing and
input validation stages of a program. Meanwhile, grammar-
and type-aware generators can exercise “deep” code paths
that pass validation steps. The test oracle of detecting crashes
can be used with any test case generator, but can only find
obvious errors such as memory or assertion violations, and
not subtle semantic bugs. Property-based testing can find se-
mantic bugs, but requires users to write invariant properties
of test results or side effects, which is expensive.

The test oracle of interest for this paper is differential test-
ing [17], where the same input is given to multiple implemen-
tations of a system—in our case, a programming language. If
the multiple implementations are correct, then giving them
all the same input program (and executing the returned out-
put if the implementation is a compiler) should produce the
same result. When there is a difference in program output, a
bug has been found. While differential testing can find subtle
semantic bugs without writing extra properties, there is a
catch. If the input program relies on any behavior that is
not guaranteed to be the same between multiple executions
and multiple implementations of the language, differences
in output do not necessarily indicate a bug. Therefore, dif-
ferential testing requires programs that conform strictly to
the language specification, as well as avoiding undefined,
implementation-defined, or nondeterministic behavior. We
call such inputs conforming inputs.1
One notable generator of conforming programs is

Csmith [24]. Csmith successfully identified hundreds of bugs

1We considered other words to convey that a program is suitable for differen-
tial testing, such as the word differentiable. However, the word differentiable
has other meanings that would make this confusing.

https://orcid.org/0009-0006-9588-0646
https://orcid.org/0000-0002-6490-3466
https://orcid.org/0000-0003-3900-5602
https://orcid.org/0009-0000-0880-1812
https://orcid.org/0000-0001-7206-8408
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3624007.3624056
https://doi.org/10.1145/3624007.3624056

GPCE ’23, October 22–23, 2023, Cascais, Portugal William Gallard Hatch, Pierce Darragh, Sorawee Porncharoenwase, Guy Watson, and Eric Eide

⟨int⟩ ::= z | 0 < z < 100
⟨exp⟩ ::= ⟨exp⟩ + ⟨exp⟩

| ⟨exp⟩ / ⟨exp⟩
| ⟨int⟩

Figure 1: The Grammar of the calc Language

in mainstream C compilers, including LLVM and GCC. How-
ever, the development of Csmith took hundreds of person-
hours and resulted in nearly 40,000 lines of code. Although
practically any language could benefit from such a program
generator, it is impractical for most language developers to
write a variant of Csmith targeting their own language.

To ease the development of fuzzers that generate conform-
ing programs, we createdXsmith. Xsmith is a domain-specific
language (DSL), implemented as a Racket library, that allows
for the rapid and concise implementation of conforming
program generators for arbitrary programming languages.2

The primary contributions of this paper are:
• A domain-specific language for creating conforming
program generators.

• A generic framework for declaring type and effect
systems for program generation used in the DSL im-
plementation.

• Several example fuzzers implemented using the DSL,
some of which have been used to find bugs in language
implementations used in production.

• An analysis of the effectiveness and cost of the example
fuzzers.

2 Design
In this section we describe the overall design of Xsmith at
a high level. Throughout the section, we develop a simple
fuzzer for a small toy calculator language (named calc) as an
example. The grammar of this language is shown in Figure 1.
Xsmith fuzzers generate program trees by starting with

a “hole” node for the top-level production of the grammar.
Xsmith iteratively fills hole nodes in the tree with nodes
corresponding to appropriate grammar productions, which
may themselves have holes as children, as shown in Figure 2.
A fuzzer author provides Xsmith with a grammar declaration
that determines the grammar of program generation.

The grammar used by an Xsmith fuzzer generally matches
the logical structure of the language or a subset of the lan-
guage, but is usually not the same as the grammar used for
parsing the language or the grammar of a compiler’s AST
representation. This is because parser grammars typically
encode complicated rules for turning linear text into an AST,
and because full language grammars can be large and diffi-
cult to model for producing conforming programs. Xsmith’s

2Xsmith is open source, with code available at
https://gitlab.flux.utah.edu/xsmith/xsmith/

expHole

Choice Objects

for selected hole

Add

Div

Int

ExpHole ExpHole

Add
Choice Objects

for selected hole

Add

Div

Int

ExpHole ExpHole

Div ExpHole

Add

Choice Objects

for selected hole

Add

Div

Int

The tree starts as a single ExpHole node. Choices that are
alternates for Exp are listed and one is chosen at random.
The process repeats with a new hole until no holes are left.
At some points choices are filtered. For example, non-atomic
choices are filtered when the tree gets too deep.

Figure 2: The Process of Hole Filling

simplified AST-focused grammar system allows users to ig-
nore syntax complexity to focus on modeling semantics for
finding “deep” bugs. Users can start with a small subset of
the grammar, and iteratively grow their subset to include
more features.

The declared grammar is compiled to generate an object-
oriented attribute grammar specification for the RACR at-
tribute grammar library [3]. RACR facilitates analysis of
generated program fragments, allowing data flow both up
and down the tree for any analysis. The generated attribute
grammar matches the input grammar but adds a hole pro-
duction as an alternative for each user-provided production.
While Xsmith program generation is grammar-driven at

its core, generation of conforming programs requires consid-
erations besides the grammar, such as for types and nondeter-
minism. To enable filtering and probability weighting based
on these other considerations, the grammar is also compiled
into a set of choice classes, one for each given production.
When the generation algorithm selects the next hole to fill,
a choice object is instantiated for each production that could
be used to replace the hole, and the resulting list of choice
objects is used to make the decision.

https://gitlab.flux.utah.edu/xsmith/xsmith/

Generating Conforming Programs With Xsmith GPCE ’23, October 22–23, 2023, Cascais, Portugal

The difference between the attribute grammar and choice
classes is often confusing to people learning about Xsmith for
the first time. During generation, the AST being generated
is represented by attribute grammar nodes, including hole
nodes. Choice objects, or instances of choice classes, are
not part of the AST, but are constructed when considering
a particular hole node to fill. Each generated choice object
corresponds to a different AST node choice that could be
used to replace the currently chosen hole node, according to
the grammar. Choice class methods are used to determine
whether the given production choice is appropriate for the
hole, given constraints besides the grammar, such as for types
or unspecified behavior. To make this determination, choice
class methods may query attributes of the AST, as well as
other choice class methods on the same choice object. When
a particular choice is made, the fresh method of the chosen
choice object is used to construct a new attribute grammar
node to replace the hole node. Then generation either moves
on to another hole, which constructs new choice objects, or
terminates.

Below is an example Xsmith specification that implements
the grammar of the calc language. Each arm of the add-to-
grammar form contains the name of a production, the super-
type of that production, and a list of fields for that production.
The Add and Div productions each have two children, and
these children must themselves be Exp (expression) produc-
tions. These Exp children will be instantiated as Exp holes.
The Int production specifies an integer literal, whose val
child may contain arbitrary Racket data. In this example, val
is initialized to a random integer between 1 and 100. (This
random selection occurs each time an Int hole is filled.)

;; Fuzzers may use multiple add-to-grammar forms to
;; declare a grammar in a modular fashion.
(add-to-grammar calc
[Exp #f ()

#:prop may-be-generated #f]
[Add Exp ([lhs : Exp]

[rhs : Exp])]
[Div Exp ([lhs : Exp]

[rhs : Exp])]
[Int Exp ([val = (random 1 100)])])

In addition to writing a grammar, a fuzzer author can de-
clare various attributes and choice methods of each grammar
production.
During generation, an Xsmith-based fuzzer uses choice

methods to determine whether a particular choice of gram-
mar production is suitable for replacing a hole. For example,
the _xsmith_satisfies-type? choice method is used to fil-
ter out choices with invalid types, the _xsmith_wont-over-
deepen method is used to make choices that will keep the
generated program size bounded, and the _xsmith_fresh
choice method determines how a chosen node is initialized.3

3Because attribute and method names are bare symbols without namespac-
ing, we use the xsmith_ prefix by convention for names defined by Xsmith

Choice methods may call other choice methods, as well as
attributes of their corresponding hole node.
Attributes are methods of AST nodes, and are used to

perform analysis. For example, the xsmith_type attribute
computes the type of a node, used by choice methods such
as _xsmith_satisfies-type?, and the _xsmith_visible-
bindings attribute computes a list of bindings available for
reference at a given point in the tree. Attributes may query
other attributes on the same AST node or on other nodes
during computation, allowing data to flow up and down the
tree as needed to make choices.
Besides attributes and choice methods, users may also

declare properties of each grammar production. Properties
are an abstraction on top of attributes and choice methods
which simplify the specification of many aspects of a lan-
guage. Each property is essentially a small custom DSL for
describing an aspect of a language. Properties are compiled
into attributes and choice methods. While choice methods
and attributes may be written directly in a procedural style,
properties allow semantic details of a grammar production,
such as their binding structure and types, in a declarative
style. Properties range from being convenient syntax sugar
for defining a single attribute to being complicated DSLs that
analyse multiple properties together to generate a family of
attributes and choice methods.
Typical Xsmith fuzzers describe most language details

with properties rather than definingmany attributes or choice
methods directly. For example, the type-info property de-
scribed in section 4.2 is used to generate both the
xsmith_type attribute and the _xsmith_satisfies-type?
choice method. A collection of properties is included with
Xsmith for describing key features of a language. Users may
additionally define custom properties with their own com-
pilation transformers to abstract patterns between fuzzers,
although Xsmith is designed to support the majority of prop-
erties most languages’ fuzzers would need out of the box.
Properties may be declared inline with a grammar defi-

nition, as with the may-be-generated property used in the
calc grammar shown above, or separately with the add-
property form. In the following code, choice-weight of
the Div and Int nodes is adjusted to change their generation
probabilities.

(add-property calc choice-weight
[Div 10]
[Int 5])

When a tree with no holes is finally completed, it must
be converted to text for programming language implemen-
tations to consume. The xsmith_render-node attribute, de-
fined by the render-node-info property, is used to convert
the tree into text. Below is an example renderer for our calc
language.

itself, and we use a leading underscore by convention for private attributes
and methods intended for use only in Xsmith’s implementation.

GPCE ’23, October 22–23, 2023, Cascais, Portugal William Gallard Hatch, Pierce Darragh, Sorawee Porncharoenwase, Guy Watson, and Eric Eide

(define (render-infix operator)
(lambda (n)

(format "(∼a ∼a ∼a)"
(att-value 'xsmith_render-node

(ast-child 'lhs n))
operator
(att-value 'xsmith_render-node

(ast-child 'rhs n)))))
(add-property calc-grammar render-node-info
[Add (render-infix "+")]
[Div (render-infix "/")]
[Int (lambda (n)

(number->string (ast-child 'val n)))])

2.1 Validating The Grammar
Because users define their own subset of a grammar rather
than using published parser grammars, and because they
must encode many rules about the language semantics, a
user may write a generator that is incorrect. While writing a
generator, users can cross-validate it by running generated
test cases against implementations of the language, or sys-
tems under test (SUT). There are four major ways in which
an Xsmith-based fuzzer may be incorrect:

• Test cases produced by Xsmith are syntactically or
statically semantically invalid (e.g., with static type
errors). In this case, the SUT will reject them, often
with helpful error messages.

• Test cases are dynamically invalid (e.g., triggering run-
time type errors). A user would also observe errors
when interacting with the SUT.

• Generated test cases execute invalid or nondeterminis-
tic behaviors. Such cases can often be detected through
differential testing of multiple implementations or
through compile-time sanitizers.

• The grammar and associated generation rules provided
to Xsmith describe only a fraction of the language.
In this case, Xsmith would generate conforming test
cases, but without leading to good coverage of im-
plementations and/or bug-finding power. A user can
discover this by inspecting generated test cases and
the obtained coverage of the SUT following a fuzzing
campaign.

3 Example
To give a sense of what a small but still featureful Xsmith
fuzzer looks like, we present a small JavaScript fuzzer. Fig-
ure 3 is an abbreviated example of a simple JavaScript fuzzer,
with elided code sections marked by “...”. A full version of
this example is included in the Xsmith source repository.
While the full version is longer, it is still only 412 lines as
measured by the wc utility.

This example demonstrates a fuzzer that takes advantage
of the canned-components library to generate conforming
JavaScript programs that may utilize arrays, first-class func-
tions, objects (encoded in Xsmith as structural record types),

if statements, and loops. The largest amount of code elided
from the full version is in program rendering. The rendering
step tends to be verbose and varies by language, but is not
complicated or difficult to code.
This example uses a safe_divide function, defined in

a header, to avoid issues that arise from dividing by zero.
Similarly, the full version defines more safe wrappers for
array reference and assignment. While these operations are
not undefined or even necessarily troublesome behavior in
JavaScript, we use them to avoid having values collapsing
to JavaScript’s undefined value, which would otherwise
be overwhelmingly common. This demonstrates a common
pattern used when creating fuzzers with Xsmith to avoid
undefined behavior or the raising of common exceptions.

This example also does not directly use any
add-to-grammar forms, because the entire abstract gram-
mar used is provided by the canned components library,
discussed in section 4.3. A larger fuzzer will generally in-
clude canned components as well as add-to-grammar forms
that add various built-in functions specific to the language.

4 Cost Reduction Features
Xsmith has many features that work together to make the
creation of conforming program generators inexpensive in
terms of development time and effort. These features include
forms for declaring grammar, types, and name scoping and
resolution, as well as a “canned components” library to encap-
sulate language similarities, features for undefined behavior
handling, and so on. In this section we give an overview of
these features, discussing their usage and design.

4.1 Grammar and Syntax
The first step to generating programs that are conforming
is to follow a grammar. Xsmith generates program trees
according to a grammar provided by the user.

Usage.A user can define a grammar for their generator by
using the add-to-grammar form. Each grammar production
is declared as a subtype of another grammar production (pos-
sibly the abstract base grammar production, referenced by
#f). Grammar productions may have any number of children,
which can be specified as either being grammar productions
(of a given type), or storage locations for arbitrary Racket
data (used, for example, to hold values for number literals).
Children may be annotated with a Kleene star to indicate
repetition (zero or more repetitions). Below is an example of
a partial grammar definition.

(add-to-grammar js-component
[ArrayLiteral Expression ([elem : Expression *])]
[IntLiteral Expression ([value])])

Design and Implementation. Xsmith’s grammar and
AST data structures rely on the RACR [3] attribute gram-
mar library. RACR allows Xsmith grammar nodes to have
attributes that compute data that can depend dynamically

Generating Conforming Programs With Xsmith GPCE ’23, October 22–23, 2023, Cascais, Portugal

(require xsmith xsmith/canned-components racr pprint ...)

;; An Xsmith specification starts with a "spec-component"
(define-basic-spec-component js-component)

;; Use canned-components to get common grammar definitions.
(add-basic-expressions js-component

#:LambdaWithBlock #t
#:MutableArray #t
...)

(add-basic-statements js-component
#:ProgramWithBlock #t
#:IfElseStatement #t
...)

;; Use canned-component loop generator.
;; It has many options, some elided.
(add-loop-over-container js-component

#:name ForLoopOverArray
#:loop-ast-type Statement
#:body-ast-type Block
#:collection-type-constructor
(𝜆 (elem-type)

(mutable (array-type elem-type)))
...)

;; This header defines safe wrapper operations, and is included
;; when rendering the program.
(define header-definitions-block

"function safe_divide(a,b){return b == 0 ? a : a / b} ...")

(add-property js-component render-node-info
[VariableReference
(𝜆 (n) (text (ast-child 'name n)))]
[SafeDivide
(𝜆 (n) (h-append

(text "safe_divide(")
(render-child 'l n)
(text ", ")
(render-child 'r n)
(text ")")))]

[IfElseStatement
(𝜆 (n)

(h-append
(text "if (")
(render-child 'test n)
(text ")")
(render-child 'then n)
(text " else ")
(render-child 'else n)))]

...)

;; This macro defines, among other things, a function
;; to run the command line parser and start
;; generation with the given parameters.
(define-xsmith-interface-functions [js-component]

#:program-node ProgramWithBlock
#:format-render (𝜆 (doc) (pretty-format doc 120))
...)

Figure 3: Sample JavaScript Generator Written with Xsmith

on attributes or data from parent or child nodes. As an AST
grows, RACR automatically keeps track of which attributes
need to be recomputed.
Xsmith relies on grammars to allow users to define and

re-use language components. To transform the AST into an
input that is syntactically valid for a compiler or interpreter,
Xsmith includes a multi-step render phase. The goal of the
render phase is to produce a program as text. However, rather
than defining a transformation from each grammar node to a
string, it can be easier to have pleasantly formatted output by
using an intermediate format. For example, the AST can be
rendered into the data structures of Racket’s pprint pretty
printing library or to s-expressions, which both have pretty-
printing functions available.

4.2 Types
Generators of conforming programs need to produce well-
typed code to pass the type-checking stage of programming
language implementations. The requirement for type-correct
code is perhaps less strict for dynamically typed languages
than for statically typed languages. However, if code for
dynamically typed languages is generated without regard
to types, most expressions will raise run-time type errors.
Xsmith includes a type system framework that allows fuzzers
to generate well-typed code for a variety of languages.
Usage. The type system used by a fuzzer is defined by

the type-info property. This property takes two specifica-
tions per grammar node. The first specification defines the
types a grammar node can inhabit. The second specification
is a function that receives a tree node of the specified pro-
duction and its type and returns a dictionary of types for
the node’s children. In the code below, the LiteralString
and StringAppend productions are declared to always have
type string, while the VariableReference is declared to
use a type variable that can be unified with any type. The
LiteralString and VariableReference productions have
no children, but the StringAppend production constrains
its children to inherit its type.

(define no-child-types (lambda (n t) (hash)))
;; The `hash` function constructs a hash table
(add-property
js-component
type-info
[LiteralString [string no-child-types]]
[StringAppend [string (lambda (n t) (hash 'l t 'r t))]]
[VariableReference [(fresh-type-variable)

no-child-types]])

Design and Implementation. Xsmith allows its user
to specify type systems that contain base types, function
types, product types, generic types (such as lists and arrays),
nominal records, and structural records. Xsmith supports
less expressive type systems than some other tools do, such
as PLT Redex [6]. Some of these tools, like Redex, support ar-
bitrary type judgments that are compiled to first-order logic

GPCE ’23, October 22–23, 2023, Cascais, Portugal William Gallard Hatch, Pierce Darragh, Sorawee Porncharoenwase, Guy Watson, and Eric Eide

and subsequently used for type checking and generating
random terms [7]. However, Xsmith has more constraints
on generated programs than merely being well-typed. Other
analyses, such as those for the effect system described in sec-
tion 4.4, require structural reasoning on types. Therefore, we
have built a more limited type definition framework that al-
lows this cross-analysis. Despite these limitations, Xsmith’s
type checking framework is sufficient to support fuzzing
many features of popular programming languages.
Type systems specified in Xsmith may also support sub-

typing. During type checking, Xsmith performs subtype uni-
fication between the types that a tree node declares that it
supports, the types provided by its parent node, and any
types declared by relevant definition nodes for references.
Subtype unification, like traditional variable unification dur-
ing type inference, mutates type variables to indicate rela-
tionships between type variables and between type variables
and concrete types. However, unlike traditional unification,
subtype unification reflects the asymmetric relationship of
subtyping. Type variables in subtype relationships form a
lattice of related types, where (subtype-unify! a b) re-
lates a as a subtype of b, placing a below b in the lattice.
Symmetric unification in this model is implemented merely
as two subtype unifications:

(define (unify! a b)
(subtype-unify! a b)
(subtype-unify! b a))

When a type variable a is already related as a subtype to
type variable b and (subtype-unify! b a) is executed,
the relationship lattice is squashed such that a, b, and all
variables between them in the lattice are unified into a single
type variable.
While it is well known that unification-based type infer-

ence is incompatible with subtyping for type checking of
existing programs, Xsmith can use unification because it type
checks program fragments while generating a fresh program.
So, assuming the type system specification is correct, for any
needed type, it is always possible to produce a term of that
type.

4.3 Language Similarities
Many programming languages have similar language fea-
tures. To help Xsmith users avoid implementing these fea-
tures afresh for each language they write an Xsmith fuzzer
for, Xsmith provides a library of “canned components” that
automatically define the necessary grammar nodes and prop-
erties.
Usage. The main forms provided by the library are the

add-basic-statements and add-basic-expressions
macros. Each of these has a variety of optional keyword
arguments and extends a grammar with forms specified by
those arguments. These productions include literals, acces-
sors and mutators for mutable arrays and dictionaries, and

function application and definition. The code below demon-
strates how many standard productions can be added to a
grammar, with appropriate type rules and other properties,
with a canned-components macro.

(add-basic-statements js-component
#:Block #t
#:ReturnStatement #t
#:IfElseStatement #t
#:AssignmentStatement #t
...
)

The canned-components library also provides the add-
loop-over-container macro, which has various keyword
arguments allowing a user to specify whether the loop form
is a statement or an expression, which types of containers
it can loop over, and the type of the loop’s result. These
productions are added with all relevant properties for the
type and effect systems, name analysis, etc. The only non-
optional property that the user must add is the render-
node-info property. The code below demonstrates how a
loop form can be added to a grammar.

(add-loop-over-container js-component
#:name ForLoopOverArray
#:loop-ast-type Statement
#:body-ast-type Block
#:collection-type-constructor
(𝜆 (elem-type) (mutable (array-type elem-type)))
...)

Design and Implementation. The canned components
are implemented as a library of macros that generate the
most common patterns of grammar and property definitions.
The canned-components library reduces the amount of code
required to write a new fuzzer, and it reduces the duplication
of tedious and error-prone type rules and other properties
that are easy to get slightly wrong.

4.4 Unspecified and Implementation-Defined
Behavior

For practical reasons, some programming languages leave
the semantics of certain constructs either up to individual
implementations or completely undefined. A generator of
conforming programs must avoid every type of unspecified
or non-deterministic behavior in the programs that it gener-
ates. One common unspecified behavior concerns the order
of evaluation of subexpressions, such as multiple arguments
in a function call. While the evaluation order is unimportant
in the evaluation of purely functional code, effectful code
that assigns variables or mutates values requires a consistent
ordering to be conforming.
Usage. To avoid generating code with an unspecified ef-

fect order, a user simply annotates which nodes include
different effects, such as reading and writing to variables or
mutable data structures. This is demonstrated in the follow-
ing code.

(add-property js-component reference-info

Generating Conforming Programs With Xsmith GPCE ’23, October 22–23, 2023, Cascais, Portugal

[Reference (read)]
[Assignment (write)])

Design and Implementation. Xsmith includes an effect
analysis that enumerates the possible effects of code evalua-
tion and conservatively avoids ordering conflicts. Tracked
effects include variable reference and assignment, projection
and mutation of values like arrays, and higher-order func-
tion application. Whenever a potential conflict arises, such
as referencing a variable in one function argument while
assigning to the same variable in another argument, Xsmith
filters out the choices that would lead to the generation of of-
fending programs. A user may annotate grammar nodes that
impose a specified ordering on their children, such as block
and sequence constructs, with the strict-child-order?
property.

Besides effect ordering, programming languages have an
inconsistent variety of features that cause undefined, or at
least unhelpful, behavior. For example, out-of-bounds array
access is an undefined behavior in C, while in many other
languages it is defined to raise an exception. Although a
raised exception is well defined and potentially an interesting
part of the language API to fuzz test, in typical fuzz testing
an array access exception is likely not a useful behavior. For
example, because the set of possible values of type int in a
given programming language is likely much larger than the
set of usable array sizes, array access with approximately
uniformly generated int values will raise exceptions much
more often than it will yield values. For both defined and
undefined semantics of array access, it is usually best to
generate code that wraps such accesses to convert the index
to a number within bounds or provide a fallback result value.

Since these behaviors are
language-specific, each fuzzer needs some amount of unique
attention to them. The common pattern used in our exam-
ple fuzzers is to include program header text that defines
safe wrapper functions for potentially problematic function-
ality, possibly including extra fallback arguments (e.g., for
accessing an empty list). The grammar can then target the
safe wrappers instead of the raw unsafe operations. Some of
these behaviors are common and have been captured in the
canned-components library.

4.5 Name Scoping and Resolution
Generators of conforming programs need to produce pro-
gramswhere variables referenced are defined in scope. Xsmith
includes a generic analysis to ensure that variables are well
scoped. If a reference is generated in a position where no
appropriately typed variable is in scope, Xsmith will auto-
matically add an appropriate definition node into a scope
that is visible to the new reference.

Usage.Users can annotate which grammar nodes bind and
reference variables using the binder-info and reference-
info properties, such as with the following code.

(add-property js-component binder-info
[Definition ()]
[FormalParam (#:binder-style parameter)])

However, common patterns for binders and references have
also been captured in the canned-components library, so
most users do not need to interact with these properties
directly.

Design and Implementation. Our resolution system is
based on scope graphs [18], which is a generic system for
representing variable scoping in programming languages.
Based on user-provided annotations, Xsmith will generate
scope graph models for generated programs, and use them
to find which variables that are in scope at any position.

4.6 Language-Specific Analyses
While Xsmith includes several generic analyses, an advanced
fuzzer may benefit from a language-specific analysis. Be-
cause they are language-specific, such analyses can not rea-
sonably be included in the Xsmith framework. However,
Xsmith provides features that aid a user in writing custom
analyses.
Users can define custom attributes and choice methods,

as well as custom Xsmith properties. Custom properties are
essentially mini-DSLs that can compile declarative data into
attributes and choice methods. Defining custom properties
requires familiarity with Racket macro writing techniques,
and we will leave discussion of custom properties to the
Xsmith documentation. Finally, users can leverage Xsmith’s
generic analyses as dependencies of their analyses, such as
by querying a node’s type during a custom analysis.

Custom properties, attributes, and choice methods provide
a way for Xsmith users to extend Xsmith with arbitrary
Racket code. This allows Xsmith fuzzers to include features
never imagined by Xsmith’s authors.

4.7 Making Decisions
Xsmith includes features for both filtering potential decisions
and for adjusting the probability of different choices when
filling holes in the generated AST.
Usage. A user can add custom choice methods as filters

by using the choice-filters-to-apply property. The fol-
lowing code applies filter choice-method defined above to
restrict VariableReference generation.

(add-property choice-filters-to-apply js-component
[VariableReference (allow-ref)])

A user can adjust the frequency of different grammar node
choices with the choice-weight property, shown below.

(add-property choice-weight js-component
[IfStatement 50]
[AssignmentStatement
(𝜆 (hole) (if (eq? (ast-node-type

(ast-parent hole))
'IfStatement)

20

GPCE ’23, October 22–23, 2023, Cascais, Portugal William Gallard Hatch, Pierce Darragh, Sorawee Porncharoenwase, Guy Watson, and Eric Eide

30))])

The choice weight may be given a positive integer or a func-
tion that returns a positive integer based on an analysis of
the program.

Design and Implementation.When filling a hole, Xsmith
instantiates one choice object with the appropriate class for
each subtype of the required node type. For example, in a hole
of type Expression, Xsmith will instantiate a choice object
for each of IntegerLiteral, VariableReference, Addi-
tion, and so on. Each of these choices is filtered based on
the specifications given to the choice-filters-to-apply
property, including default filters such as type satisfaction.
After a list of valid choices has been filtered, each remain-
ing choice has its choice-weight computed. A choice is
then randomly made, with each choice having probability
choiceWeight / weightSum.

4.8 Additional Features
Xsmith includes various other features that we lack room to
discuss, such as an integrated automatic test-case reducer,
an extensible command-line interface, support for modular
fuzzer declaration, iterative refinement, parametric genera-
tion in the manner of Zest [20], and more.

5 Evaluation
We evaluate Xsmith by considering a set of fuzzers built
with Xsmith as well as bugs found with those fuzzers. We
assess the difficulty of creating fuzzers with Xsmith and the
number and quality of bugs found. In particular, we examine
a particular case study of fuzzing Dafny.

5.1 Fuzzers
Generators of conforming programs typically require a lot
of effort to create. Csmith, a predecessor to Xsmith and its
major inspiration, required hundreds of person-hours and
tens of thousands of lines of code. Xsmith fuzzers require
substantially less effort and code. Figure 4 compares sizes of
a selection of conforming program generators in terms of
code size.
While the implementations of Xsmith-based fuzzers are

significantly smaller than similar conforming program gen-
erators like Csmith [24], Verismith [10], and SQLSmith [21],
they still produce programs that are syntactically and seman-
tically valid as well as free from undefined or nondeterminis-
tic behavior. Additionally, Xsmith fuzzers can be featureful,
generating correct code for conditionals, rich types, variable
references, and so on.
Xsmith is not the only generic framework for creating

programming language fuzzers. Other generic frameworks
include Polyglot [4] and StarSmith [13]. While Xsmith has
the greatest focus on differential testing compared to other
generic frameworks, it compares well in terms of implemen-
tation effort per fuzzer, as shown in Figure 5.

Generator | LOC | Language
Csmith | 38,988 | C++
Verismith | 10,139 | Haskell
SQLsmith | 3,909 | C++
Xsmith Racket Fuzzer | 1,265 | Racket
Xsmith Dafny Fuzzer | 1,666 | Racket
Xsmith Standard ML Fuzzer | 1,151 | Racket
Xsmith WebAssembly Fuzzer | 1,433 | Racket
Xsmith Python Fuzzer * | 1,800 | Racket
Xsmith Lua Fuzzer * | 450 | Racket
Xsmith Javascript Fuzzer * | 412 | Racket
All line counting was done with Unix wc. Fuzzers marked
with * have not been exercised in substantial fuzzing cam-
paigns.

Figure 4: Comparison of Conforming Program Generators

Generator | LOC | Language
Xsmith Framework | 13,325 | Racket
Xsmith Racket Fuzzer | 1,265 | Racket
Xsmith Dafny Fuzzer | 1,666 | Racket
Xsmith Standard ML Fuzzer | 1,151 | Racket
Xsmith WebAssembly Fuzzer | 1,433 | Racket
Xsmith Python Fuzzer * | 1,800 | Racket
Xsmith Lua Fuzzer * | 450 | Racket
Xsmith Javascript Fuzzer * | 412 | Racket

| |
StarSmith Framework | 19,524 | Java
StarSmith C Fuzzer | 1,702 | LaLa
StarSmith Lua Fuzzer | 1,578 | LaLa
StarSmith SQL Fuzzer | ∼ 3,500 | LaLa
StarSmith SMT Fuzzer | ∼ 700-900 | LaLa

| |
Polyglot Framework | | Mostly C++
Polyglot C Fuzzer | 1,508 | Mix
Polyglot JavaScript Fuzzer | 1,618 | Mix
Polyglot PHP Fuzzer | 2,013 | Mix
Polyglot Solidity Fuzzer | 2,090 | Mix
Counts prefixed with ∼ are approximate. Fuzzers marked
with * have not been used in substantial fuzzing campaigns.

Figure 5: Comparison of Generic Fuzzing Frameworks

Some StarSmith line counts are approximate, because for
SQL and SMT their repository contains multiple versions
of each fuzzer with various modifications. The size of the
Polyglot framework is difficult to ascertain, as the bulk of its
implementation is a modification to AFL, and the Polyglot
authors keep the entire modified copy of AFL in their source
tree. Polyglot grammar specifications are given with a mix

Generating Conforming Programs With Xsmith GPCE ’23, October 22–23, 2023, Cascais, Portugal

of JSON specification, Python code, and other formats that
are specific to Polyglot.

5.2 Fuzzing Dafny
In the summer of 2021, one of the authors of this paper4 be-
gan the XDsmith project [12] using Xsmith to fuzz Dafny [14],
a verification-aware programming language. He was expe-
rienced with Racket but had no previous experience with
Xsmith. In about a week, he prototyped his Xsmith-based
Dafny generator. During a three-month period, he improved
his fuzzer and found 28 Dafny bugs. Since that period, his
fuzzer has found an additional 2 bugs in the open source
Dafny implementation. His fuzzer implementation has 1,666
lines of code, as well as differential testing and verification
testing code totaling 722 more lines.
While Dafny fuzzing primarily used differential testing

(comparing different Dafny compiler back ends) and compiler
error detection, it also included a verification oracle that
found one bug. Additionally, one bug was found as a side-
effect of writing the fuzzer. While the author was trying to
determine the proper type constraint to write for one feature
of the fuzzer, he decided to manually test violations of the
constraint, and found a bug.

This experience shows that Xsmith can be utilized to write
an effective fuzzer in a small time period with a small amount
of code.

5.3 Summary of Bugs Found
We have found bugs using Xsmith fuzzers for various pro-
gramming languages, listed in Figure 6. All reported bugs
are unique.
Aside from one Racket bug that had been fixed before

we found it, all bugs listed are new (not publicly reported
or fixed before we discovered them through fuzzing). All
Racket bugs were confirmed by Racket’s maintainers, and
all but one have been fixed. All Dafny bugs and issues were
confirmed by Dafny maintainers, and 6 have been fixed. All
of the WebAssembly and Standard ML bugs we found have
been confirmed, and most of them have been fixed.
We have written fuzzers for various other languages be-

sides those in the bug table, such as Python, JavaScript, and
Lua. However, we have not performed extensive fuzzing
with them or with the WebAssembly or Standard ML fuzzers.
These less-used fuzzers likely all need at least minor improve-
ments to be effective at finding bugs.
Approximately half of the bugs found by Xsmith-based

fuzzers so far have been semantic errors detected by differ-
ential testing. These bugs can effectively only be found by
program generators that reliably generate conforming test
cases. Otherwise, if semantically valid but non-conforming

4The XDsmith author was invited to become a co-author of this paper after
writing the fuzzer. At the time of writing the fuzzer, he was completely
independent of Xsmith’s original authors.

(or semantically invalid) programs are regularly generated,
differential testing oracles would be overrun with false posi-
tive results, and would be practically useless.

Similarly, approximately half of the bugs found could only
effectively be found by generators of semantically correct
(though not necessarily conforming) program generators.
Bugs characterized by valid programs failing to compile
would have too many false positives if tested using a gener-
ator that does not reliably generate semantically valid test
cases. Some bugs found were characterized by a “success-
ful” compilation that produced ill-formed output. Testing
for ill-formed output when the compiler is successful could
reasonably be performed with generators of semantically or
even syntactically invalid code, but such bugs would likely
be difficult for such generators to trigger.

In our experiments, Xsmith program generators have found
few crash bugs, the bug class most commonly found by
fuzz testing. Differential fuzz testing with Xsmith appears to
be very complementary to other fuzzing practices, such as
fuzzing with generators of random bytes such as AFL [25].
Xsmith seems well suited to finding a different class of bugs
than tools like AFL, and Xsmith does not effectively stress
early compiler stages such as parsing.

5.4 Bug Discussion
We present and discuss a small selection of bugs found. The
code snippets presented are simplified presentations to illus-
trate the bugs, not the actual code generated by Xsmith.

5.4.1 Racket and Chez Scheme Float Modulo Bug.
When using a large floating point number, Racket CS (Racket
built on Chez Scheme) would give wrong answers to the
modulo operator. The bug was found through differential
testing.5

#lang racket/base
;; This number is big enough that despite
;; the .1 it passes `integer?`.
(define num
;; The number has been shortened to fit inside
;; margins. The real number had 14 more digits.
93674811510424315205562331463211094477254417232.1)

(println (integer? num)) ;; Prints true
;; But modulo doesn't stay in bounds of the divisor.
(println (modulo num 10)) ;; Prints a number >10

It was determined that it was actually a bug in Chez
Scheme itself, and was fixed.6

5.4.2 Racket BCGCDBug. This is an example of a bignum
boundary bug. The bugwas determined to be at least 20 years
old, and included in the oldest repository import to CVS. The
bug was found by differential testing.7

5This bug was submitted as https://github.com/racket/racket/issues/3469.
6The Chez Scheme bug was fixed in
https://github.com/cisco/ChezScheme/pull/537.
7Reported as https://github.com/racket/racket/issues/3484.

https://github.com/racket/racket/issues/3469
https://github.com/cisco/ChezScheme/pull/537
https://github.com/racket/racket/issues/3484

GPCE ’23, October 22–23, 2023, Cascais, Portugal William Gallard Hatch, Pierce Darragh, Sorawee Porncharoenwase, Guy Watson, and Eric Eide

Language | Implementation | Crash Bugs | Semantic Bugs | Static Non-crash Bugs | Total
Racket | BC | 0 | 5 | 0 | 5
Racket | CS | 0 | 4 | 0 | 4
Racket | Both Back Ends | 0 | 2 | 0 | 2
Total Racket Bugs | | | | | 11

| | | | |
Dafny | Java Back End | 0 | 0 | 8 | 8
Dafny | C# Back End | 1 | 3 | 3 | 7
Dafny | Go Back End | 0 | 3 | 0 | 3
Dafny | JavaScript Back End | 0 | 4 | 1 | 5
Dafny | All Back Ends | 0 | 1 | 7 | 8
Total Dafny Bugs | | | | | 30

| | | | |
WebAssembly | Wasmer | 1 | 4 | 0 | 5

| | | | |
Standard ML | ML MLKit | 0 | 0 | 1 | 1
Crash Bugs: Bugs characterized by a memory error or assertion violation in the compiler or interpreter causing the system
under test to exit abnormally. This is not simply failure to compile an input or an interpreter exiting with an exception.
Semantic Bugs: Bugs characterized by a wrong program result. Found primarily by differential testing, but also by testing
various properties. For example, a raised exception when the fuzzer has been constrained not to generate code that raises
exceptions.
Static Non-crash Bugs: This category includes various kinds of bugs whose finding would have required syntactically and
semantically correct programs but not necessarily conforming programs. For example, this category includes failure to compile
correct programs, ill-formed compiler output (eg. Dafny compiler outputting ill-formed Java code that the Java compiler can’t
compile), etc.

Figure 6: Bugs Found with Xsmith-Based Fuzzers

#lang racket/base
(define num -4611686018427387904)
;; The gcd function should always return non-negative
;; numbers, but RacketBC returns a negative number.
(gcd num num)

5.4.3 Racket Serialization Bug. Besides differential test-
ing, some bugs are found with various properties. For ex-
ample, our Racket fuzzer was designed to produce code that
does not raise exceptions. Thus, a program that raises an
exception is evidence of a bug (in Racket or in our fuzzer).
This bug was present in both Racket BC (the old C back end
for Racket) and Racket CS (the new Chez Scheme back end),
and was found with an interesting property.

The write and read functions are primitive serialization
and deserialization functions in Racket and Scheme. In ver-
sion 7.9, the latest release at the time of fuzzing, the handling
in the read function for Unicode character U+FEFF, the byte-
order-mark, was changed. However, the write function was
not changed. Thus, data could be altered in a round-trip
between the read and write functions.
When printing generated Racket programs, our Racket

fuzzer pretty prints them using a function that ultimately
uses the write function. When compiling our generated pro-
grams, the Racket compiler uses the read function. The bug

was found because the compiler was rejecting ill-formed
programs that were mangled between generation and compi-
lation by the write and readmismatch.8 We found multiple
write and read mismatch bugs in this manner.

5.4.4 Dafny Bugs Related to Zero Multiplicity. This
class of bugs was found with differential testing. Internally,
the multiset data structure in Dafny is implemented as a
dictionary mapping from elements to the multiplicity. Many
multiset operations assumed the invariant that the multi-
plicities will always be positive. However, this invariant in
fact did not hold, as the multiplicity changing operation can
break the invariant. The following code would produce true
false when compiled to C#, false true when compiled
to Go, true true when compiled to JavaScript, and false
false (which is the correct output) when compiled to Java.9

method Main ()
{

var a := multiset{12}[12 := 0];
var b := multiset{42};
print 12 in a, " ", a == b, "\n";

8This bug was reported as https://github.com/racket/racket/issues/3486.
9These bugs were reported as https://github.com/dafny-
lang/dafny/issues/1359 and https://github.com/dafny-
lang/dafny/issues/1361.

https://github.com/racket/racket/issues/3486
https://github.com/dafny-lang/dafny/issues/1359
https://github.com/dafny-lang/dafny/issues/1359
https://github.com/dafny-lang/dafny/issues/1361
https://github.com/dafny-lang/dafny/issues/1361

Generating Conforming Programs With Xsmith GPCE ’23, October 22–23, 2023, Cascais, Portugal

}

5.4.5 Dafny Bug Found by Verification Testing. In ad-
dition to differential testing, generated Dafny programs were
also used for verification testing, which aims to find sound-
ness and precision issues in the Dafny verifier. Additionally,
it is useful for finding discrepancies of the underlying se-
mantics between the verifier and the compilers. Given a
generated Dafny program with print statements, verifica-
tion testing compiles and runs the program, and correlates
print statements with their outputs. The program is sub-
sequently transformed to turn the print statements into
assertions. In the most basic form of verification testing, we
expect that these assertions should be verified by the verifier.
These assertions therefore test the Dafny verifier’s ability to
predict the output emitted by the compiled program.
In the following bug, all compiled Dafny programs re-

turned the same incorrect answer, so the bug could not be
discovered by differential testing. Yet, it was determined to
be incorrect by the verification testing. The problem was
that the superset operation was compiled into a subset oper-
ation.10

method Main ()
{

var a := {1};
var b := {1, 2};
print a > b;

}

6 Discussion
We discuss a qualitative comparison of Xsmith to other sys-
tems for creating programming language fuzzers, and discuss
Xsmith’s limitations.

6.1 Comparison to Polyglot
Polyglot [4] is a generic language processor that can be con-
figured to produce programs in different languages by pro-
viding configuration in a custom format. Polyglot has been
very effective at finding crash bugs, finding over 100 bugs
in implementations of 9 programming languages. Polyglot
uses constrained mutation and a semantic validation step
that improves its probability of generating semantically valid
programs. These features prevent Polyglot from generating
programswith problems such as references to undefined vari-
ables, and prevents many type errors. However, these steps
do not guarantee semantic correctness. In their evaluation
of Polyglot, Chen et al. show that none of their generators
produces semantically valid test cases more than 60% of the
time. This rate of producing semantically invalid test cases

10This bug was reported as https://github.com/dafny-
lang/dafny/issues/1357. Because the output of the print statement
is incorrect, when it is turned into an assertion the verifier detects that the
assertion is violated, thus revealing the bug.

renders it ineffective as a generator for oracles that consis-
tently require semantically valid test cases to prevent false
positives, including differential testing.

6.2 Comparison to StarSmith
The StarSmith [13] program generator is a generic frame-
work for generating semantically correct programs. It is
configured using a DSL called LaLa, in which users specify
the grammar and other rules for program generation, similar
to Xsmith. While StarSmith has no built-in or default steps
to prevent undefined or other behaviors that are unsuitable
for differential testing, users may write custom LaLa code
to prevent some such behaviors. For example, the StarSmith
authors created a Lua fuzzer that includes a filter preventing
the generation of any events in positions where the order of
operations is not guaranteed.
While LaLa makes it possible to create a fuzzer for dif-

ferential testing, it does not encapsulate common patterns
to make it easy. If StarSmith users want to make a similar
fuzzer that prevents unspecified effect ordering, they would
need to write a similar filter. Additionally, this filter is stricter
than Xsmith’s generic effect analysis, which can still allow
non-conflicting effects when evaluation order is unspecified.

Aside from this observation about encapsulating patterns,
it is difficult to compare the suitability of Xsmith and Star-
Smith for differential testing, since StarSmith’s authors ex-
pressed a lack of confidence that their programs were actu-
ally free of undefined behavior. They reported total instances
of test cases uncovering a bug, from fuzzing with conforming
configurations, rather than unique bugs found or confirmed
as they did for other generators. This makes it difficult to
know if they found many bugs or few bugs repeated many
times. However, they did report unique bugs for their differ-
ential testing of SQL, in which they found 11 semantic bugs
and 13 segfault bugs among 3 SQL implementations using a
SQL generator of approximately 3500 lines of code in their
LaLa DSL. This generator was significantly larger than their
other generators. Creating specifications for StarSmith to
create conforming program generators is possible, but its
focus appears to be on program generators for crash fuzzing.

6.3 Limitations of Xsmith
While Xsmith inhabits a new and useful point in the space
of fuzzing tools, it has various limitations.

6.3.1 Type System. Xsmith’s type system is flexible but
not comprehensive. For example, Xsmith can not currently
generate functions with parameters that can be multiple
different types but that are not fully generic enough to allow
any type, such as a function that accepts either a string or
an integer but no other type. Additionally Xsmith can not
generate functions with optional arguments or other forms
of variadic functions. Built-in functions with such types can
be specified as productions in an Xsmith grammar, allowing

https://github.com/dafny-lang/dafny/issues/1357
https://github.com/dafny-lang/dafny/issues/1357

GPCE ’23, October 22–23, 2023, Cascais, Portugal William Gallard Hatch, Pierce Darragh, Sorawee Porncharoenwase, Guy Watson, and Eric Eide

Xsmith to generate calls to them. However, for complicated
types, multiple grammar nodes may need to be specified to
allow x generation of uses of all potential types of a function.
The type system also lacks a notion of classes. While we

have implemented structural records with subtyping and
nominal records, which can be used to represent some as-
pects of object-oriented languages, we have not yet designed
a generic system to encode the semantics of classes and ob-
jects that is well-suited to a variety of languages. Because
classes, objects, and methods have widely varying seman-
tics in different languages, it is difficult to determine what
essential features such an encoding should have.

Another limitation of the type system currently is a lack of
“negative types” to constrain type variables. There are often
situations where one or more particular types are disallowed
but where any other type is allowed. An example situation
is a position where functions are disallowed, but base types
like int and string are allowed, as well as composite types
such as list composed of other allowed types (perhaps
recursively). Rather than specifying that function types are
disallowed, users must enumerate allowed types. Since the
set of allowed types may be large or infinite, users might
only enumerate a subset of allowed types.

6.3.2 Probabilities. Xsmith follows a long history of using
weight specifications to determine the probability of gener-
ating any given grammar production[22]. Besides weights,
the probability of generating any given production is also
affected by filters that consider the type system, the effect sys-
tem, AST depth, and other factors. While Xsmith’s weighting
system is flexible and allows for dynamic weight determina-
tion, it is difficult to determine how any weighting scheme
will ultimately affect the probability of generating a particu-
lar production or combination of productions.
Xsmith provides a logging mechanism to view the fre-

quency at which different productions were generated or
under consideration for generation. However, logging does
not provide a guide to understand how to improve a weight-
ing scheme to achieve amore desired probability distribution,
nor does it provide insight into what distributions would be
effective at finding bugs.

6.3.3 Effects. The generic effect analysis in Xsmith is both
conservative and limited. Because it is conservative, limiting
generation to only programs that are guaranteed to be free of
unspecified effect ordering, Xsmith filters out many choices
that would lead to generating valid, conforming programs.
This limitation particularly affects higher-order values. For
example, Xsmith has no analysis to determine whether two
container values (such as arrays) are the same, so it conser-
vatively assumes that any mutation to a particular container
type may conflict with any other access or mutation of that
same container type. Because the effect analysis must be
generic enough to analyze programs in many languages
with varying semantics (most of which is unspecified within

an Xsmith fuzzer), the analysis is very limited. Therefore the
set of rejected programs is very large, and has great potential
to include many interesting and bug-inducing programs.
Xsmith could potentially include a more precise effect

analysis by including a way for users to specify language-
specific value- and control-flow analyses. However, that
would greatly increase the difficulty of writing a new fuzzer,
and it is unclear how much it would improve a fuzzer’s bug-
finding capabilities.

7 Related Work
We compare Xsmith to related systems. In particular, we
discuss conforming program generators, program generator
generators, and grammar-directed fuzzers.

7.1 Conforming Program Generators
Some random testers for programming languages generate
conforming programs, or programs that are syntactically
and semantically valid as well as being free from nondeter-
minism, undefined behavior, and unspecified behavior. An
early major conforming program generator was Csmith [24].
Similar systems include Verismith [10] and SQLsmith [21].
YARPGen [15] statically generates programs that are free
from undefined behavior with no dynamic checks. Csmith
and other conforming program generators have been very
successful at finding bugs in programming language imple-
mentations. These bugs include semantic bugs found with
differential testing that can not be found by more common
crash oracles. However, conforming program generators like
Csmith require much programmer time and tend to be tens
of thousands of lines of code to implement.
JFQ [19] is a framework for imperative property-based

testing that has been successfully used to fuzz programming
languages. JFQ allows users to write correctness properties
for generated data. However, JFQ does not include a general
framework for program analysis to generate conforming
programs, so users must write their own analyses.

Xsmith is a DSL and library for building conforming pro-
gram generators like Csmith, but with less time and code.
Xsmith eases development of conforming program gener-
ators by providing a declarative DSL, along with generic
analyses, generation strategies, and other tools as a library.
Thus Xsmith allows users to build conforming program gen-
erators at a fraction of the cost of stand-alone generators
like Csmith.

7.2 Program Generator Generators
Polyglot [4] is a framework that takes a language specifi-
cation in a custom format and produces random programs.
Polyglot includes a semantic validation step that improves
the percentage of syntactically and semantically valid test
cases generated. However, programs generated by Polyglot

Generating Conforming Programs With Xsmith GPCE ’23, October 22–23, 2023, Cascais, Portugal

are not guaranteed to be syntactically or semantically cor-
rect, or to be conforming. Polyglot has been successfully used
to find well over 100 bugs in implementations of at least 9
programming languages. However, it is not a suitable system
for finding semantic bugs via differential testing because
generating non-conforming programs leads to impractically
high false positive rates.

StarSmith [13] is a framework that takes a language speci-
fication in a DSL called LaLa and produces random programs.
StarSmith generates programs that are syntactically valid
and well-typed. Some StarSmith generators have been fur-
ther crafted to generate programs that are free of unspecified
behavior for differential testing. StarSmith generators that
have filters to generate only conforming programs must in-
dividually be constrained to not generate offending code. For
example, the StarSmith authors created a Lua generator that
included custom code to prevent any effects when the order
of evaluation is not guaranteed. Such code would need to
be repeated for each generator in StarSmith for languages
without guarantees of evaluation order.

PLT Redex [6] is a framework that allows users to specify
a semantics for a programming language. It includes a test-
ing feature that generates random well-typed programs [7].
However, it does not generate programs that are free from
undefined behavior. This is useful in Redex, since it helps
users to find where undefined behavior exists in their seman-
tics definitions, however it limits its use as a generator for
differential testing.
LangFuzz [11] is a fuzzer that uses grammar-directed

fuzzing. Additionally, LangFuzz can incorporate code pat-
terns learned by parsing program corpuses. LangFuzz has
successfully found many bugs. However, LangFuzz does not
generate conforming programs that are free from undefined
behavior, limiting its practical utility for differential testing.
Xsmith has been designed to generate programs suitable

for differential testing. Xsmith fuzzers generate programs
that are syntactically and semantically valid, in addition
to being free from undefined or nondeterministic behav-
ior. Xsmith includes generic effect analyses for the common
case of unspecified order of evaluation, allowing programs
to include effects while still preserving a well-defined rela-
tionship between effects. While some unspecified behaviors
need to be handled on a per-language basis, Xsmith’s canned
components library helps with some common patterns.

7.3 Grammar-Directed Fuzzers
Some fuzzers, such as Lava[22] and Yagg [5], are grammar-
directed[1, 8, 9, 16], meaning they only build program trees
thatmatch a given grammar. These fuzzers are useful because
they can generate syntactically valid test cases that pass early
stages of a compiler or other language processor, allowing
fuzzing to exercise deeper code paths. However, grammar-
directed fuzzers, without other guidance, do not guarantee
that their outputs semantically correct or conforming. Thus

they can not reliably be used to find semantic bugs through
differential testing.

Some grammar-directed fuzzers such as Grimoire [2] auto-
matically learn a grammar instead of taking a user-supplied
grammar is input. While this automatic learning step means
that the fuzzer requires less up-front effort to craft a gram-
mar specification, it provides even weaker guarantees about
the syntactic and semantic validity of produced outputs.

Xsmith is grammar-directed in addition to being directed
by other analyses, such as type and effect analyses. These
analyses constrain program generation to produce conform-
ing programs that are useful for finding semantic bugs.

8 Conclusion
Differential fuzz testing can be a powerful tool for finding
semantic bugs in programming languages. Xsmith is a li-
brary and DSL that provides shared infrastructure, declara-
tive specification, and extension hooks that allow users to
easily build featureful fuzz testers for differential testing.
Xsmith has been used to create a variety of fuzzers requiring
modest effort and code size that have found bugs in differ-
ent language implementations. Compared to related work,
Xsmith is the first tool focused on easily creating fuzzers
for differential testing. Xsmith fuzzers can be used synergis-
tically with other fuzzing techniques to find bugs in many
language implementations.

Acknowledgments
We thank the anonymous GPCE reviewers for their valuable
comments on this work. We performed our experiments in
the Utah Emulab [23] testbed. This material is based upon
work supported by the National Science Foundation under
Grant Number 1527638.

References
[1] Michael Beyene and James H. Andrews. 2012. Generating String

Test Data for Code Coverage. In Proc. 2012 IEEE 5th International
Conference on Software Testing, Verification and Validation (ICST). 270–
279. https://doi.org/10.1109/ICST.2012.107

[2] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi,
Sergej Schumilo, Simon Wörner, and Thorsten Holz. 2019. GRI-
MOIRE: Synthesizing Structure While Fuzzing. In Proc. 28th USENIX
Security Symposium. 1985–2002. https://www.usenix.org/conference/
usenixsecurity19/presentation/blazytko

[3] Christoff Bürger. 2015. Reference Attribute Grammar Controlled Graph
Rewriting: Motivation and Overview. In Proc. 2015 ACM SIGPLAN
International Conference on Software Language Engineering (SLE). 89–
100. https://doi.org/10.1145/2814251.2814257

[4] Yongheng Chen, Rui Zhong, Hong Hu, Hangfan Zhang, Yupeng Yang,
Dinghao Wu, and Wenke Lee. 2021. One Engine to Fuzz ’em All:
Generic Language Processor Testing with Semantic Validation. In
Proc. 42nd IEEE Symposium on Security and Privacy (S&P). 642–658.
https://doi.org/10.1109/SP40001.2021.00071

[5] David Coppit and Jiexin Lian. 2005. Yagg: An Easy-to-Use Gen-
erator for Structured Test Inputs. In Proc. 20th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). 356–359.
https://doi.org/10.1145/1101908.1101969

https://doi.org/10.1109/ICST.2012.107
https://www.usenix.org/conference/usenixsecurity19/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity19/presentation/blazytko
https://doi.org/10.1145/2814251.2814257
https://doi.org/10.1109/SP40001.2021.00071
https://doi.org/10.1145/1101908.1101969

GPCE ’23, October 22–23, 2023, Cascais, Portugal William Gallard Hatch, Pierce Darragh, Sorawee Porncharoenwase, Guy Watson, and Eric Eide

[6] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009.
Semantics Engineering with PLT Redex. MIT Press.

[7] Burke Fetscher, Koen Claessen, Michał Pałka, John Hughes, and
Robert Bruce Findler. 2015. Making Random Judgments: Automatically
GeneratingWell-Typed Terms from the Definition of a Type-System. In
Programming Languages and Systems, Jan Vitek (Ed.). Springer Berlin
Heidelberg, 383–405. https://doi.org/10.1007/978-3-662-46669-8_16

[8] Patrice Godefroid, AdamKiezun, andMichael Y. Levin. 2008. Grammar-
Based Whitebox Fuzzing. In Proc. 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). 206–215.
https://doi.org/10.1145/1375581.1375607

[9] K. V. Hanford. 1970. Automatic Generation of Test Cases. IBM Systems
Journal 9, 4 (Dec. 1970), 242–257. https://doi.org/10.1147/sj.94.0242

[10] Yann Herklotz and John Wickerson. 2020. Finding and Understanding
Bugs in FPGA Synthesis Tools. In Proc. 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA). 277–287. https:
//doi.org/10.1145/3373087.3375310

[11] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing
with Code Fragments. In Proc. 21st USENIX Security Symposium. 445–
458. https://www.usenix.org/conference/usenixsecurity12/technical-
sessions/presentation/holler

[12] Ahmed Irfan, Sorawee Porncharoenwase, Zvonimir Rakamarić, Neha
Rungta, and Emina Torlak. 2022. Testing Dafny (Experience Paper).
In Proc. 31st ACM SIGSOFT International Symposium on Software Test-
ing and Analysis (ISSTA). 556–567. https://doi.org/10.1145/3533767.
3534382

[13] Patrick Kreutzer, Stefan Kraus, and Michael Philippsen. 2020.
Language-Agnostic Generation of Compilable Test Programs. In Proc.
IEEE International Conference on Software Testing, Verification and Val-
idation (ICST). 39–50. https://doi.org/10.1109/ICST46399.2020.00015

[14] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for
Functional Correctness. In Logic for Programming, Artificial Intelli-
gence, and Reasoning, Edmund M. Clarke and Andrei Voronkov (Eds.).
Springer Berlin Heidelberg, 348–370. https://doi.org/10.1007/978-3-
642-17511-4_20

[15] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random
Testing for C and C++ Compilers with YARPGen. Proc. ACM Program.
Lang. 4, OOPSLA, Article 196 (Nov. 2020), 25 pages. https://doi.org/
10.1145/3428264

[16] Peter M. Maurer. 1990. Generating Test Data with Enhanced Context-
Free Grammars. IEEE Software 7, 4 (1990), 50–55. https://doi.org/10.
1109/52.56422

[17] William M. McKeeman. 1998. Differential Testing for Software. Digital
Technical Journal 10, 1 (1998), 100–107. https://www.hpl.hp.com/
hpjournal/dtj/vol10num1/vol10num1art9.pdf

[18] Pierre Néron, Andrew P. Tolmach, Eelco Visser, and GuidoWachsmuth.
2015. A Theory of Name Resolution. In Programming Languages
and Systems - 24th European Symposium on Programming, ESOP 2015,
Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings
(Lecture Notes in Computer Science, Vol. 9032), Jan Vitek (Ed.). Springer,
205–231. https://doi.org/10.1007/978-3-662-46669-8_9

[19] Rohan Padhye, Caroline Lemieux, and Koushik Sen. 2019. JQF:
Coverage-Guided Property-Based Testing in Java. In Proc. 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). 398–401. https://doi.org/10.1145/3293882.3339002

[20] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and
Yves Le Traon. 2019. Semantic Fuzzing with Zest. In Proc. 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). 329–340. https://doi.org/10.1145/3293882.3330576

[21] Andreas Seltenreich. 2020. SQLsmith software repository. https:
//github.com/anse1/sqlsmith

[22] Emin Gün Sirer and Brian N. Bershad. 1999. Using Production Gram-
mars in Software Testing. In Proc. 2nd Conference on Domain Spe-
cific Languages (DSL). 1–13. https://www.usenix.org/conference/dsl-
99/using-production-grammars-software-testing

[23] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar.
2002. An Integrated Experimental Environment for Distributed Sys-
tems and Networks. In Proc. 5th Symposium on Operating Systems
Design and Implementation (OSDI). 255–270. https://www.usenix.org/
legacy/event/osdi02/tech/white.html

[24] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and
Understanding Bugs in C Compilers. In Proc. 32nd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI).
283–294. https://doi.org/10.1145/1993498.1993532

[25] Michał Zalewski. 2020. American Fuzzy Lop. https://lcamtuf.
coredump.cx/afl/

Received 2023-07-14; accepted 2023-09-03

https://doi.org/10.1007/978-3-662-46669-8_16
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1147/sj.94.0242
https://doi.org/10.1145/3373087.3375310
https://doi.org/10.1145/3373087.3375310
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://doi.org/10.1145/3533767.3534382
https://doi.org/10.1145/3533767.3534382
https://doi.org/10.1109/ICST46399.2020.00015
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3428264
https://doi.org/10.1109/52.56422
https://doi.org/10.1109/52.56422
https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3293882.3330576
https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith
https://www.usenix.org/conference/dsl-99/using-production-grammars-software-testing
https://www.usenix.org/conference/dsl-99/using-production-grammars-software-testing
https://www.usenix.org/legacy/event/osdi02/tech/white.html
https://www.usenix.org/legacy/event/osdi02/tech/white.html
https://doi.org/10.1145/1993498.1993532
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Design
	2.1 Validating The Grammar

	3 Example
	4 Cost Reduction Features
	4.1 Grammar and Syntax
	4.2 Types
	4.3 Language Similarities
	4.4 Unspecified and Implementation-Defined Behavior
	4.5 Name Scoping and Resolution
	4.6 Language-Specific Analyses
	4.7 Making Decisions
	4.8 Additional Features

	5 Evaluation
	5.1 Fuzzers
	5.2 Fuzzing Dafny
	5.3 Summary of Bugs Found
	5.4 Bug Discussion

	6 Discussion
	6.1 Comparison to Polyglot
	6.2 Comparison to StarSmith
	6.3 Limitations of Xsmith

	7 Related Work
	7.1 Conforming Program Generators
	7.2 Program Generator Generators
	7.3 Grammar-Directed Fuzzers

	8 Conclusion
	Acknowledgments
	References

